AOI 的智能辅助编程功能是提升操作效率的亮点,爱为视 SM510 通过 AI 算法简化编程流程,即使非专业人员也能快速上手。传统 AOI 编程需手动设置阈值、绘制 ROI(感兴趣区域),而该设备只需导入 PCBA 设计文件或手动拍摄基准图像,系统即可自动识别元件位置、类型及标准形态,生成检测模板。例如,在检测带有异形元件的 PCBA 时,AI 算法可通过深度学习自动提取元件特征,无需人工逐一定义检测规则,大幅减少编程时间,尤其适合紧急订单或临时换线场景,确保产线快速切换生产。随着科技发展,AOI 的功能不断升级,如今能适应多种复杂环境下的检测任务,对不同材质物体均可检测。江苏3dAOI光学检测仪

随着新能源汽车的快速发展,新能源电池的质量和安全性备受关注。AOI在新能源电池制造过程中有着重要的应用。在电池电极的生产环节,AOI可以检测电极表面的涂层厚度是否均匀、有无气泡或划痕等缺陷。这些缺陷可能会影响电池的性能和寿命。在电池组装过程中,AOI可以检测电池模组的焊接质量、极耳的连接是否牢固等。此外,AOI还可以对电池的外观进行检测,确保电池外壳无破损、标识清晰。通过使用AOI技术,电池制造商能够提高产品质量,降低次品率,保障新能源电池的安全性和可靠性。2d aoi工厂依赖 AOI 进行质量监控,保障电子成品的高合格率。

AOI 的多维度报表功能为管理层提供决策依据,爱为视 SM510 可生成缺陷柏拉图、趋势控制图、设备稼动率报表等 10 余种可视化报告,支持按日、周、月维度自动汇总数据。例如,通过柏拉图分析可直观显示当月大主要缺陷(如连锡占 45%、偏移占 30%、缺件占 15%),帮助企业聚焦重点改善方向;趋势控制图则可追踪关键工艺参数(如检测通过率)的波动情况,及时发现潜在的质量隐患。这些报表不可通过本地显示器查看,还能自动发送至管理层邮箱,便于远程掌握产线运行状态。
AOI的发展历程可以追溯到上世纪70年代。早期,由于计算机技术和图像处理算法的限制,AOI设备的功能相对简单,只能进行一些基本的形状和尺寸检测。随着计算机性能的大幅提升以及图像处理算法的不断优化,AOI技术逐渐成熟。到了90年代,AOI在电子制造领域得到了应用,其检测精度和速度都有了显著提高。进入21世纪,随着人工智能技术的兴起,AOI开始引入深度学习算法,能够自动学习和识别各种复杂的缺陷模式,进一步提高了检测的准确性和适应性。如今,AOI已经成为现代制造业中不可或缺的质量检测工具,并且在不断朝着更高精度、更智能化的方向发展。AOI智能视觉系统通过高精度相机抓图,结合卷积神经网络与深度学习,智能判定缺陷。

AOI 的硬件性能直接决定长期稳定运行能力,爱为视 SM510 搭载 Intel i5 12 代 CPU 与 NVIDIA 12G GPU,64G 内存和 1T 固态硬盘 + 8T 机械硬盘的存储配置,确保大数据量下的快速处理与存储。在连续 24 小时运行的自动化产线中,设备可实时处理每秒数十张的高清图像,同时存储数年的检测数据供追溯分析。例如,汽车电子厂商需保存 PCBA 检测记录至少 5 年,该设备的大容量存储与快速检索功能可满足合规要求,避免因数据存储不足导致的历史记录丢失。AOI 智能判定通过深度神经网络分析图像,减少人工干预,提升检测一致性与客观性。AOI配23.8”显示器,界面友好、操作人性,支持多任务架构,测试时可在线编辑同步。上海新一代AOI检测仪
AOI检测速度0.22秒/FOV,配1200W全彩相机,分辨率9μ,输出高质量图像。江苏3dAOI光学检测仪
AOI 的产线集成灵活性满足智能化工厂布局需求,爱为视 SM510 支持进出方向可调(左进右出或右进左出),可与贴片机、回流焊炉、SPI(焊膏检测)设备等无缝串联,形成全自动检测闭环。例如,在一条典型的 SMT 产线中,AOI 可部署于回流焊炉后,实时接收 SPI 设备的前序数据,结合焊后检测结果进行工艺对比分析,为优化焊膏印刷与回流焊温度曲线提供依据。这种模块化设计使设备可根据工厂现有产线布局灵活调整位置,限度减少产线改造工作量。江苏3dAOI光学检测仪