可以插入控制字符。在10bit数据可以表示的1024个组合中,除了512个组合用 于对应原始的8bit数据以及一些不太好的组合(这样信号里有太长的 连续0或者1,而且明显0、1的数量不平衡)以外,还有一些很特殊的组合。这些特殊的组 合可以用来在数据传输过程中作为控制字符插入。这些控制字符不对应特定的 8bit数据,但是在有些总线应用里可以一些特殊的含义。比如K28.5码型,其特殊的 码型组合可以帮助接收端更容易判别接收到的连续的10bit数据流的符号边界,所以在一 些总线的初始化阶段或数据包的包头都会进行发送。还有一些特殊的符号用于进行链路训 练、标记不同的数据包类型、进行收发端的时钟速率匹配等。数字信号的抖动(Jitter);DDR测试数字信号测试厂家现货
通常情况下预加重技术使用在信号的发送端,通过预先对信号的高频分量进行增强来 补偿传输通道的损耗。预加重技术由于实现起来相对简单,所以在很多数据速率超过 1Gbps 的总线中使用,比如PCle,SATA 、USB3 .0 、Displayport等总线中都有使用。当 信号速率进一步提高以后,传输通道的高频损耗更加严重,靠发送端的预加重已经不太 够用,所以很多高速总线除了对预加重的阶数进一步提高以外,还会在接收端采用复杂的均 衡技术,比如PCle3.0 、SATA Gen3 、USB3.0 、Displayport HBR2 、10GBase-KR等总线中都 在接收端采用了均衡技术。采用了这些技术后,FR-4等传统廉价的电路板材料也可以应用 于高速的数字信号传输中,从而节约了系统实现的成本。DDR测试数字信号测试厂家现货示波器进行数字信号的幅度测试;
理想的跳变位置。抖动是个相对的时间量,怎么确定信号的理想的跳变位置对于 抖动的测量结果有很关键的影响。对于时钟信号的测量,我们通常关心的是时钟信号是否 精确地等间隔,因此这个理想位置通常是从被测信号中提取的一个等周期分布时钟的跳变 沿;而对于数据信号的测量,我们关心的是这个信号相对于其时钟的位置跳变,因此这个理 想跳变位置就是其时钟有效沿的跳变位置。对于很多采用嵌入式时钟的高速数字电路来 说,由于没有专门的时钟传输通道,情况要更复杂一些,这时的理想跳变位置通常是指用一 个特定的时钟恢复电路(可能是硬件的也可能是软件的)从数据中恢复出的时钟的有效跳 变沿。
数据经过8b/10b编码后有以下优点:
(1)有足够多的跳变沿,可以从数据中进行时钟恢复。正常传输的数据中可能会有比较长的连续的0或者连续的1,而进行完8b/10b编码后,其编码规则保证了编码后的数据流中不会出现超过5个连续的0或1,信号中会出现足够多的跳变沿,因此可以采用嵌入式的时钟方式,即接收端可以从数据流中通过PLL电路直接恢复时钟,不需要专门的时钟传输通道。
(2)直流平衡,可以采用AC耦合方式。经过编码后数据中不会出现连续的0或者1, 但还是有可能在某个时间段内0或者1的数量偏多一些。从上面的编码表中我们可以看 到,同一个Byte对应有正、负两组10bit的编码, 一个编码中1的数量多一些,另一个编码中 0 的数量多一些。数据在对当前的Byte进行8b/10b编码传输时,会根据前面历史传输的 数据中正负bit的数量来选择使用哪一组编码,从而可以保证总线上正负bit的数量在任何 时刻基本都是平衡的,也就是直流点不会发生大的变化。直流点平衡以后,在信号传输的路 径上我们就可以采用AC耦合方式(常用的方法是在发送端或接收端串接隔直电容),这 样信号对于收发端的地电平变化和共模噪声的抵抗能力进一步增强,可以传输更远的距离。 数字信号的波形分析(Waveform Analysis);
数字信号的建立/保持时间(Setup/HoldTime)
不论数字信号的上升沿是陡还是缓,在信号跳变时总会有一段过渡时间处于逻辑判决阈值的上限和下限之间,从而造成逻辑的不确定状态。更糟糕的是,通常的数字信号都不只一路,可能是多路信号一起传输来一些逻辑和功能状态。这些多路信号之间由于电气特性的不完全一致以及PCB走线路径长短的不同,在到达其接收端时会存在不同的时延,时延的不同会进一步增加逻辑状态的不确定性。
由于我们感兴趣的逻辑状态通常是信号电平稳定以后的状态而不是跳变时所的状态,所以现在大部分数字电路采用同步电路,即系统中有一个统一的工作时钟对信号进行采样。如图1.5所示,虽然信号在跳变过程中可能会有不确定的逻辑状态,但是若我们只在时钟CLK的上升沿对信号进行判决采样,则得到的就是稳定的逻辑状态。 数字信号常用的编码方式有哪些?DDR测试数字信号测试厂家现货
什么是模拟信号和数字信号是什么。DDR测试数字信号测试厂家现货
时域数字信号转换得到的频域信号如果起来,则可以复现原来的时域信号。
描绘了直流频率分量加上基频频率分量与直流频域分量加上基频和3倍频频率分量,以及5倍频率分量成的时域信号之间的差别,我们可以看到不同频域分量的所造成的时域信号边沿的差别。频域里包含的频域分量越多,这些频域分量成的时域信号越接近 真实的数字信号,高频谐波分量主要影响信号边沿时间,低频的分量影响幅度。当然,如果 时域数字信号转变岀的一个个频率点的正弦波都叠加起来,则可以完全复现原来的时域 数字信号。其中复原信号的不连续点的震荡被称为吉布斯震荡现象。 DDR测试数字信号测试厂家现货
可以插入控制字符。在10bit数据可以表示的1024个组合中,除了512个组合用 于对应原始的8bit数据以及一些不太好的组合(这样信号里有太长的 连续0或者1,而且明显0、1的数量不平衡)以外,还有一些很特殊的组合。这些特殊的组 合可以用来在数据传输过程中作为控制字符插入。这些控制字符不对应特定的 8bit数据,但是在有些总线应用里可以一些特殊的含义。比如K28.5码型,其特殊的 码型组合可以帮助接收端更容易判别接收到的连续的10bit数据流的符号边界,所以在一 些总线的初始化阶段或数据包的包头都会进行发送。还有一些特殊的符号用于进行链路训 练、标记不同的数据包类型、进行收发端的时钟速率匹配...