在技术迅速更迭下,国内外学者积极探索AIGC融入图书馆服务的应用场景。陆伟等探讨以ChatGPT为**的大语言模型对信息资源建设、信息组织与检索、信息治理等方面的影响[28]。赵杨等构建融合AIGC技术的智慧图书馆体系框架[29],储节旺等从服务方式、服务内容、服务效果等三个方面分析AIGC对智慧图...
智慧导读是一种利用人工智能技术进行个性化阅读推荐的服务。它基于用户的兴趣、阅读习惯和历史记录等信息,自动分析并推荐符合用户兴趣的文章、新闻、书籍等内容,帮助用户更快速地获取到自己感兴趣的内容。智慧导读的实现离不开大数据和机器学习技术,它需要对用户的数据进行深入的分析和挖掘,并建立相应的推荐算法模型,才能提供准确、实用的推荐服务。在教育领域,智慧导读也发挥着重要的作用。例如,在激发学生的阅读兴趣方面,智慧导读可以根据学生的年龄阶段和心理状态,提供具有吸引力的插图或儿歌因素的读物,以激发学生的阅读兴趣。同时,通过影视动画、电影等多媒体形式,也可以帮助学生更加简单地理解书中的内容,增强书本的吸引力。总的来说,智慧导读以其个性化和智能化的特点,为用户提供了更加便捷、高效的阅读体验,同时也为教育领域注入了新的活力和创新。智慧导读可以帮助读者更快速、更深入地理解文章。数字图书馆智慧导读案例

在强大的计算能力和海量数据支撑下,当前AIGC技术的内容创作效率已经超越人类。例如,在传统的公共图书馆绘画活动中,参与者创作一个复杂作品往往需要数小时,而通过使用绘图应用,参与者*需输入提示文本,不到一分钟便能生成一张精美的作品草图。展望未来,在AIGC技术的辅助下,内容创作相关行业的生产效率必将得到更加的提升。尽管AIGC技术带来了诸多便利,但公共图书馆从业人员也应认识到在其研发和应用过程中面临的诸多挑战。。数字图书馆智慧导读案例上海半坡是专门为图书馆提供文献知识服务的公司。

阅读理解能力直接关系到学术阅读的效果,而阅读认知策略则影响着阅读理解能力,情境、技术、体验等要素影响阅读认知过程,认知神经科学视角下的数字阅读认知机制包含注意吸引、识别聚焦、关联推理和学习建构4个阶段[47]。以前受制于技术条件,无法提供个性化、动态性与精细性的阅读认知策略服务。人工智能环境下,AMiner、YewnoDiscover、PaperDigest等平台开展尝试,开发自动综述、生成解读视频、研究要素分享提供等功能,助力于“识别聚焦”与“关联推理”过程。但提供此种服务的平台数量仍较少,作为学术用户常用数字入口的文献数据库在此方面有待优化。AIGC技术环境下,海量知识存储训练的大模型面世,能够在沉浸式阅读、辅助阅读方面提供支持。
个性化阅读推荐系统的设计始于高效且精确的数据采集、处理与分析。在智慧图书馆中,用户每天进行搜索、阅读和下载等互动行为均会产生大量数据。以大型智慧图书馆为例,其每月会新增数千份电子书和期刊,且数百万用户的日常活动会生成海量数据记录,包括搜索查询、点击和下载等行为数据。这些数据是设计个性化阅读推荐系统的基础,需要收集和处理,以便后续进行分析和应用。数据采集必须***覆盖用户数据,包括用户的注册信息、借阅记录、阅读习惯,以及用户与智慧图书馆资源的交互方式等。依托上述数据,个性化阅读推荐系统可掌握用户的基本兴趣和偏好,鉴别用户潜在的兴趣领域和行为模式,从而为推荐给予数据方面的支持。近几年出现的一种标题形式。

智慧数据源于大数据且是大数据的组成部分,具体是利用数智技术有效处理、分析海量多源异构的大型数据集,产生呈现多模态、多粒度、强操作性、精确性、高价值等特征的多源融合数据(即智慧数据),智慧数据经数据消费后与其他多源异构数据共同构成大数据,随着领域应用深化与数智技术发展实现智慧数据迭代。智慧数据由动态化的流通转化过程形成,首先是通过数据采集环节获取由各领域业务活动产生的多源异构、价值密度低的原生数据,其次通过原生数据处理环节产生具备可解释性、开放性、相关性的中间数据,通过中间数据分析环节产生可推理、情境化的智慧数据。智慧数据用于智能完成具体业务领域下的特定任务,具体是将适配各业务场景的多维度标签、目录体系嵌入数智技术赋能的业务流程,智能感知业务需求后动态调用智慧数据以提供规律揭示、问题推理、循证溯源、趋势预测等智能服务,由此实现智慧数据专业化、垂直化的领域精细应用。其基于实时搜索结果的知识层面的语义概念专指、聚类、发散、显性、隐性及其多维度的关联揭示等功能特色。参考智慧导读概况
尤其是网络技术、数字存储和传输技术等的普及,数字图书馆应运而生。数字图书馆智慧导读案例
个性化阅读推荐系统设计的关键为内容资源管理与标签化。智慧图书馆需把内容资源进行数字化管理,并给每本书籍、期刊、文章等都贴上标签,这些标签包括书籍的主题、作者、出版时间、阅读难易程度等,从而对资源进行有效的分类及标签化处理。当用户请求推荐时,个性化阅读推荐系统可迅速筛选出契合其需求的书籍或资源。同时,智慧图书馆还能按照读者的反馈以及借阅频率来调整资源标签,使推荐精细水平提升。在设计智慧图书馆的个性化阅读推荐系统时,推荐算法的选择是关键。统计显示,个性化阅读推荐系统可以将用户满意度提高至少25%,同时增加用户访问图书馆资源的频率。因此,选择合适的推荐算法对提升图书馆的服务质量和效率具有***影响。选择推荐算法时需要考虑多种因素,包括用户行为数据的类型和规模、系统的性能要求以及不同类型资源的特性。智慧图书馆通常处理大量的用户行为数据,从数百万到数十亿不等,每天生成数百万事件,这要求推荐系统具备强大的计算能力,以高效处理和分析大规模数据。数字图书馆智慧导读案例
在技术迅速更迭下,国内外学者积极探索AIGC融入图书馆服务的应用场景。陆伟等探讨以ChatGPT为**的大语言模型对信息资源建设、信息组织与检索、信息治理等方面的影响[28]。赵杨等构建融合AIGC技术的智慧图书馆体系框架[29],储节旺等从服务方式、服务内容、服务效果等三个方面分析AIGC对智慧图...
互联网科研学术助手客服电话
2025-11-27
综合科研学术助手便捷
2025-11-26
信息化智慧导读口碑推荐
2025-11-25
安徽智慧导读采购
2025-11-24
信息科研学术助手联系人
2025-11-23
江西参考智慧导读
2025-11-22
哪些科研学术助手成本
2025-11-21
哪些智慧导读平台
2025-11-20
数字图书馆智慧导读案例
2025-11-19