在电子设备日益普及的现在,电磁干扰成为影响设备正常运行的重要因素之一,至强星鼓风机高度重视抗干扰设计,严格遵循 ESD、EMC/EMI 等行业标准,确保产品在复杂电子环境中能够稳定可靠地工作。在 ESD(静电放电)防护方面,产品通过 ±15kV 空气放电、±8kV 接触放电测试,具备良好的静电防护能力,有效避免静电击穿马达驱动电路等关键部...
查看详细 >>散热风扇的维护与保养 为确保散热风扇持续快速工作,定期维护保养必不可少。首先要定期清理风扇扇叶和周围的灰尘,灰尘积聚不仅影响美观,还会增加风扇运转阻力,降低风量。可以使用柔软的毛刷或压缩空气罐进行清理。检查风扇的固定部件,确保风扇安装牢固,防止在运行过程中因松动产生噪音或损坏。对于使用时间较长的风扇,若发现转速明显下降或噪音增大...
查看详细 >>鼓风机在不同气候条件下的适应性 不同地区的气候条件差异较大,鼓风机具备良好的适应性,能够在各种气候环境下稳定运行。在寒冷地区,鼓风机采用耐寒材料和特殊的防冻设计,即使在低温环境下也能正常启动和工作;在高温地区,其散热性能良好,不会因环境温度过高而出现故障。在潮湿多雨的地区,鼓风机具有良好的防潮性能,避免因湿气侵入而损坏设备。无论...
查看详细 >>散热风扇的类型 - 轴流风扇 轴流风扇是常见的散热风扇类型。其扇叶形状呈螺旋桨状,电机带动扇叶旋转时,空气沿轴向流动。轴流风扇具有结构简单、成本低、风量大的特点。在电脑机箱风扇、服务器散热风扇中普遍应用。它能迅速将大量空气吹过散热鳍片,实现迅速散热。比如常见的 120mm 机箱轴流风扇,转速在 1000 - 2000 转 / 分...
查看详细 >>鼓风机的基础原理与应用场景 鼓风机是一种依靠输入机械能来提高气体压力并输送气体的流体机械,其工作原理主要是通过叶轮旋转产生离心力,使气体获得动能并转化为压力能。在工业领域中,鼓风机的应用极为普遍:纺织行业利用其进行织物的干燥与通风,化工行业借助其输送各类气体原料,环保领域则将其用于污水处理中的曝气环节。不同类型的鼓风机(如罗茨...
查看详细 >>汽车电子(如车载芯片、电控系统)的散热模组需适配高温、振动、空间狭小的工况,设计侧重耐用性与适应性。车载中控芯片模组采用“铝合金外壳一体化散热+小型风扇”,外壳既是保护壳也是散热主体,表面设计散热筋增大面积,风扇在温度超过60℃时自动启动,某车型中控模组在夏季暴晒后(车内温度达70℃),芯片温度仍稳定在85℃以下。新能源汽车电控系统模组则...
查看详细 >>离心鼓风机的工作原理与优势分析 离心鼓风机依靠叶轮高速旋转产生的离心力来压缩气体,其工作过程可分为吸气、加速、加压和排气四个阶段。与其他类型鼓风机相比,离心鼓风机具有明显的性能优势:在大流量工况下,其效率更高,能耗更低;叶轮采用后弯式设计,可减少气体冲击损失,提升运行稳定性;通过变频调节转速,能灵活适应不同负荷需求,调节范围广...
查看详细 >>清理散热鳍片:散热鳍片堵塞也会影响散热效果。因此,需要定期清理散热鳍片上的灰尘和污垢以确保其畅通无阻。更换散热介质:若散热介质失效导致散热效果不佳,需要更换新的散热介质。例如对于液冷散热系统需要定期更换冷却液以确保其散热效果。四、预防措施与日常维护为了避免鼓风机风扇出现异响、断电以及不散热等问题,需要采取以下预防措施和日常维护措施:定期检...
查看详细 >>深圳市至强星科技有限公司作为专注于散热解决方案的设计生产型企业,在散热模组领域拥有坚实的研发团队支撑与深厚技术积累。公司组建了一支 10 多名专业人员构成的高效研发设计团队,团队成员覆盖结构、电路、声学、流体、制程、模具及可靠度等多个关键技术领域,能够从多维度保障散热模组的研发质量与创新能力。研发团队关键聚焦于马达、叶形及轴承结构的技术设...
查看详细 >>鼓风机的基础原理与应用场景 鼓风机是一种依靠输入机械能来提高气体压力并输送气体的流体机械,其工作原理主要是通过叶轮旋转产生离心力,使气体获得动能并转化为压力能。在工业领域中,鼓风机的应用极为普遍:纺织行业利用其进行织物的干燥与通风,化工行业借助其输送各类气体原料,环保领域则将其用于污水处理中的曝气环节。不同类型的鼓风机(如罗茨...
查看详细 >>被动式散热模组无需风扇等动力部件,通过导热与自然对流实现散热,适合低功耗、静音需求高的场景。其组件为高密度鳍片与热管,鳍片采用铝合金或铜材质,通过精密冲压或焊接形成梳状结构,增大与空气的接触面积;热管则呈 U 型或扁平状,紧密贴合发热体,提升导热效率。这类模组常见于机顶盒、路由器等低功耗设备,以及医疗仪器、音响等对噪音敏感的场景。设计上需...
查看详细 >>随着电子设备性能不断提升,高功率、高密度设备带来的散热需求日益迫切,至强星科技持续在散热模组领域进行技术创新,推出多款具备突破性的产品,开启高效散热新篇章。公司新推出的新一代散热模组,采用结构与材料双重创新设计:在结构上,优化散热模组的整体布局,改进热管与鳍片的连接方式,缩短热量传导路径,提升热量扩散效率;在材料上,选用导热系数更高、耐高...
查看详细 >>