振动基本参数
  • 品牌
  • 国洲电力
  • 型号
  • GZAF-1000T系列,GZAF-1000S系列,
振动企业商机

3.3信号分析与处理3.3.1OLTC运行状态分析OLTC动作时,典型声纹振动和驱动电机电流的信号如下图8所示。通过分解时域内典型信号区间,可有效判断分接开关驱动电机启动、分接选择器断开、分接选择器闭合、切换开关动作、驱动电机制动等动作顺序,进而分析分接开关的运行状态。然而,以上通过典型信号分析判断分接开关的运行状态需要丰富的实践经验,为方便技术人员快速完成诊断任务,需通过多种算法更直观、准确的判断开关状态。变压器声纹振动监测与诊断系统结合基于小波变换及希尔伯特变换的包络分析、基于互相关系数的重合度分析、基于小波多分辨率分解的能量分布曲线分析、基于时频分布矩阵的信号对比等多种核芯算法,实现OLTC***、有效、准确的状态诊断和早期故障监测与诊断,降低变压器运行的故障风险。杭州国洲电力科技有限公司售后承诺。智能振动声纹原理

智能振动声纹原理,振动

一、概述电力系统中的开关设备主要包括气体绝缘金属封闭开关设备(英文简称GIS;内部主要是断路器、隔离开关等)、敞开式开关设备(英文简称AIS;主要是高压开关、隔离开关等)、开关柜,各类开关设备材料、工艺、设计、安装过程中的缺陷以及频繁动作极易引起机械故障,严重时更会导致电气火灾、停电等事故。本章节以GIS为例做简单分析目前运行管理情况。GIS是当今输电网络中一种应用***的电气设备。通过将变电站中断路器、隔离开关、接地开关、电压/电流互感器、避雷器、连接母线、电缆终端、进出线套管等一次设备经过优化设计并有序地结合为整体,在金属壳内封装起来,设备内部充SF6气体作为灭弧和绝缘介质组成的封闭组合电器。与传统的敞开式设备相比较,变压器振动指纹监测的原理杭州国洲电力科技有限公司振动监测标准。

智能振动声纹原理,振动

图20本系统的信号包络分析界面5.5实时采集信号与本系统内置数据库中正常状态信号横向、历史数据纵向对比。图21本系统的数据对比界面5.6声纹振动的时域信号频谱分析,提取信号频域特征参量。图22本系统的声纹振动时域信号频谱分析界面5.7运行状态告警,可选择告警发送方式。图23本系统的被试品异常状态报警设置界面5.8报表生成功能。图24本系统的被试品的监测结果生成报表功能界面六、声纹振动监测与诊断技术的应用意义我公司基于声纹振动监测技术研制的GZAFV-06T型系统适用于变压器/电抗器(绕组、OLTC、铁芯等)、开关类(GIS、敞开式断路器、隔离开关、开关柜等)等电力设备的带电检测、长时在线监测、短期重症监护,不影响被试品正常运行,且与被试品无电气连接,具有安装方便、安全、可靠等优点,

GZAFV-01系统的IED/主机形态分便携式带电监测(分体机,如上图3.3、一体机)、长期固定在线监测式(标准1U的IED,如上图3.3)等机型。其中,便携式一体机结构轻巧,适用于带电巡检、故障诊断;标准监测单元与壁挂式监测单元适用于长期在线监测与故障诊断。6.12020年10月20日,我公司荣获国网公司设备部的邀请,委派技术智造中心总监王国明博士参与国网设备部组织的关于智慧变电站技术方案审查会,向与会的国网公司设备部、各省公司设备部及各省电科院的领导和**们做了《声纹振动监测技术在变电站主设备智慧型综合监测中的作用和实施方案》的汇报,获与会领导和**们的高度认可。国洲电力振动监测系统操作。

智能振动声纹原理,振动

15、DL/T1700隔离开关及接地开关状态检修导则;16、Q/GDW383智能变电站技术导则;17、Q/GDWZ410高压设备智能化技术导则;18、Q/GDWZ414变电站智能化改造技术规范;19、Q/GDW561输变电设备状态监测系统技术导则;20、Q/GDW1535变电设备在线监测装置通用技术规范;21、Q/GDW739输变电设备状态监测主站系统变电设备在线监测I1接口网络通信规范;22、Q/GDW1168-2013输变电设备状态检修试验规程;23、Q/GDW11058变电设备在线监测系统综合监测主机/IED技术规范;24、南方电网公司年新技术应用指南(2018年版):变电设备运维检修技术--声学指纹技术;25、国家电网公司变电监测管理规定(试行)第11分册机械振动监测细则;26、国家电网公司智能组合电器技术规范;27、国家电网公司变电监测通用管理规定第38分册断路器机械特性监测细则。国洲电力变压器振动监测系统原理。杭州特高压GIS振动监测工作

断路器振动声学指纹监测技术的实操演示。智能振动声纹原理

主要意义如下:6.1采用带电监测/在线监测方式,不影响主设备正常运行,降低了电网风险;6.2减少了人员进站检查的运维成本;6.3监测方式与设备无电气连接,具有安全、可靠、安装方便等优点;6.4采用独特的时域分析、包络分析、重合度对比、时频矩阵分析等方法,并提峰值频率、总谐波畸变率、频谱互相关系数、频率复杂度、振动平稳性、能量相似度、振动相关性等特征参量等特征参量,提高在线监测的准确度。6.5内置基于海量样本的大数据和人工智能技术而建立的**分析型数据库,可真实反应设备运行状态,有效诊断绕组变形、机械卡涩、触头磨损、电动机构拒动等故障程度和类型;6.6符合智慧变电站建设原则,本系统的IED具备边缘计算能力,就地采集并处理声纹振动及融合其它信号,完成分析计算后根据传输层要求统一通讯接口及数据结构,根据平台层及应用层要求上传分析结果。智能振动声纹原理

与振动相关的**
信息来源于互联网 本站不为信息真实性负责