电极法测铌离子,在钢铁冶炼废水,控污染物排放:钢铁冶炼过程中,尤其是冶炼含铌合金钢时,会产生含铌离子的废水。铌是一种稀有金属,虽在自然环境中含量较低,但钢铁冶炼废水中铌离子浓度相对较高,若直接排放,会在水体中沉积,对水生生物的神经系统、消化系统造成损害,破坏 aquatic 生态系统。同时,铌离子还可能与水中其他污染物发生反应,形成更难降解的化合物,增加水体治理难度。电极法监测钢铁冶炼废水中的铌离子,依靠铌离子选择性电极的特异性响应,能在复杂的废水基质(含有大量铁离子、钙离子、硫酸盐等)中准确检测铌离子浓度,不受其他离子的干扰。监测站将电极检测到的信号转化为具体浓度值后,与国家钢铁工业废水排放标准中铌离子的限值进行比对。若监测到铌离子浓度超标,会立即向钢铁厂环保部门发送预警信息,工作人员需排查废水处理流程,如检查离子交换树脂是否失效、化学沉淀工艺是否正常等。例如,若离子交换树脂吸附能力下降,需及时更换树脂,确保废水中的铌离子被有效吸附去除;若沉淀药剂投加不足,需增加药剂用量,使铌离子形成稳定沉淀,经过滤分离后,废水达标排放,有效控制铌离子对水体的污染。温泉区,监测站测 pH 值,保温泉使用安全。湖泊电极法水质监测站验收标准

电极法测铂离子,在催化剂废水,助资源循环利用:催化剂生产和使用过程中,含铂催化剂(如汽车尾气催化剂、化工反应催化剂)报废后,经处理会产生含铂离子的废水。铂是一种稀有贵金属,具有极高的催化活性和经济价值,若随废水排放流失,会造成巨大的资源浪费;同时,铂离子虽毒性较低,但长期过量排放也会对水体生态造成一定影响,干扰水生生物的正常生理活动。催化剂废水成分复杂,除铂离子外,还含有其他金属离子(如钯、铑)、酸类、有机物等,若不能高效回收铂离子,既浪费资源又增加环境负担。采用电极法监测催化剂废水中的铂离子,铂离子选择性电极能在复杂废水基质中检测铂离子浓度,检测灵敏度高,能捕捉到微量铂离子,为资源回收提供数据。监测站将铂离子浓度数据实时传输至回收系统,工作人员根据浓度选择合适的回收工艺,如离子交换法或溶剂萃取法。在回收过程中,通过电极法实时监测废水中铂离子浓度变化,调整工艺参数,如离子交换树脂的流速、萃取剂的配比等,确保铂离子回收率达到 98% 以上。回收的铂可重新用于制作催化剂,实现资源循环利用,降低催化剂生产成本,减少贵金属资源消耗,同时减少废水污染,推动催化剂行业绿色发展。湖泊电极法水质监测站验收标准医院污水口,监测站测余氯,确保杀菌达标。

泳池循环系统,监测站测总碱度,稳定水质 pH 值:泳池循环系统的水质稳定对游泳者健康至关重要,总碱度是维持泳池水质 pH 值稳定的关键指标。总碱度指水中能中和酸的物质总量,主要包括碳酸氢盐、碳酸盐等。若泳池水中总碱度过低,水质缓冲能力弱,pH 值易受外界因素(如游泳者汗液、尿液、外界污染物)影响而大幅波动,pH 值过低会刺激游泳者皮肤、眼睛,腐蚀泳池设备;若总碱度过高,pH 值易偏高,会导致水中氯的消毒效果下降,形成氯胺(具有刺激性气味),同时还可能产生水垢,附着在泳池壁和管道上,影响泳池美观和设备使用寿命。因此,监测泳池循环系统中的总碱度,是稳定水质 pH 值的重要手段。监测站采用滴定法或电极法检测总碱度,能实时采集泳池循环水样本,准确测定总碱度值(泳池水总碱度适宜范围通常为 80-120mg/L,以碳酸钙计)。当监测到总碱度过低时,工作人员需向泳池中添加碳酸氢钠等碱性物质,提高总碱度;若总碱度过高,则需添加盐酸等酸性物质降低总碱度。通过实时监测和调整总碱度,确保泳池水质 pH 值稳定在 7.2-7.8 的适宜范围,为游泳者提供安全、舒适的游泳环境,同时保护泳池设备,延长其使用寿命。
电极测锆离子,在陶瓷厂废水,确保处理达标:陶瓷厂在生产过程中,尤其是生产特种陶瓷、陶瓷釉料时,会使用含锆化合物作为原料或添加剂,导致废水中含有一定浓度的锆离子。锆离子虽不属于剧毒重金属,但长期过量排放会在水体中积累,对水生生物的生长发育产生不良影响,还可能通过食物链进入人体,对人体健康造成潜在威胁。同时,陶瓷厂废水成分复杂,还含有黏土颗粒、硅酸盐、重金属离子等,若锆离子未处理达标就排放,会加剧水体污染。采用电极法监测陶瓷厂废水中的锆离子,具有检测速度快、精度高、选择性强的优势。监测设备的锆离子选择性电极能特异性识别废水中的锆离子,通过电极电位变化转化为电信号,再经数据处理模块换算成锆离子浓度。监测站会将实时监测数据与国家规定的陶瓷工业废水排放标准中锆离子的限值进行对比,若发现浓度超标,会立即触发预警,提醒工作人员检查废水处理工艺(如化学沉淀、离子交换等环节)是否正常运行。例如,若化学沉淀环节的药剂投加量不足,需及时调整投加量,确保锆离子与药剂充分反应生成沉淀,经过滤去除,终使废水达标排放,避免锆离子对水体造成污染。电极法测镓离子,在半导体废水,助资源回收。

湿地公园水体,监测站测溶解氧,维护生态平衡:溶解氧是湿地公园水体生态系统的指标,直接影响水生生物的生存和水体自净能力。湿地公园中,水生植物通过光合作用产生氧气,水生动物呼吸消耗氧气,微生物分解有机物也会消耗氧气,三者共同维持溶解氧的动态平衡。若溶解氧含量过低(低于 2mg/L),会导致鱼类、虾类等水生动物窒息死亡,微生物因缺氧转为厌氧分解,产生硫化氢、氨气等有毒气体,使水体发黑发臭,破坏湿地生态平衡;若溶解氧含量过高,虽对生物无直接危害,但可能反映水体中藻类过度繁殖,存在富营养化风险。监测站配备荧光法溶解氧传感器,无需频繁校准,能实时、连续采集湿地公园不同区域(如挺水植物区、深水区、浅滩区)的水体样本,准确测定溶解氧浓度(健康湿地水体溶解氧通常保持在 5-9mg/L)。工作人员根据监测数据判断水体生态状况,若溶解氧过低,需采取增加曝气设备、清理过多淤泥(减少有机物分解耗氧)、补种水生植物(增强光合作用产氧)等措施;若溶解氧异常过高,需排查是否存在外源营养物质输入,防止藻类爆发。通过实时监测溶解氧,能及时调控湿地水体环境,维护生态系统的稳定平衡。景观湖旁,监测站测溶解氧,防水体黑臭。广东立杆式电极法水质监测站验收标准
油田废水口,监测站测 COD,评估油污处理效果。湖泊电极法水质监测站验收标准
电极法测碘离子,在海产品加工废水,控污染物排放:海产品(如海带、紫菜、海鱼、海虾)本身含有较高的碘元素,在加工过程中(如清洗、蒸煮、腌制),碘会以碘离子的形式进入废水。虽然碘是人体必需的微量元素,但过量碘离子排放会对水体生态造成影响,如抑制某些水生植物的生长;同时,海产品加工废水还含有大量有机物、蛋白质、盐分等污染物,碘离子浓度可作为衡量废水污染程度的辅助指标 —— 碘离子含量过高,往往意味着废水中海产品残留物较多,整体污染负荷较大。采用电极法监测海产品加工废水中的碘离子,通过碘离子选择性电极,能在高盐、高有机物的废水基质中准确检测碘离子浓度,检测灵敏度高,能捕捉到微量碘离子变化。监测站将实时监测数据与地方海产品加工废水排放标准对比,若碘离子浓度超标,工作人员需加强废水处理,如采用吸附法(使用活性炭、树脂吸附碘离子)、氧化还原法(将碘离子转化为易于分离的形态)等工艺去除碘离子;同时,还需优化加工流程,减少海产品在清洗、蒸煮过程中的碘流失,从源头控制污染物排放。通过监测碘离子,能有效控制海产品加工废水的污染程度,保护周边水体环境。湖泊电极法水质监测站验收标准