微纳3D打印基本参数
  • 品牌
  • Nanoscribe
  • 型号
  • 齐全
微纳3D打印企业商机

QuantumXshape在3D微纳加工领域非常出色的精度,比肩于Nanoscribe公司在表面结构应用上突破性的双光子灰度光刻(2GL®)。全新的QuantumXshape的高精度有赖于其高能力的体素调制比和超精细处理网格,从而实现亚体素的尺寸控制。此外,受益于双光子灰度光刻对体素的微调,该系统在表面微结构的制作上可达到超光滑,同时保持高精度的形状控制。QuantumXshape不只是应用于生物医学、微光学、MEMS、微流道、表面工程学及其他很多领域中器件的快速原型制作的理想工具,同时也成为基于晶圆的小结构单元的批量生产的简易工具。通过系统集成触控屏控制打印文件来很大程度提高实用性。通过系统自带的nanoConnectX软件来进行打印文件的远程监控及多用户的使用配置,实现推动工业标准化及基于晶圆批量效率生产。早期的Photonic Professional GT微纳3D打印设计用于使用双光子聚合生产纳米和微结构塑料组件和模具。南通微纳3D打印

南通微纳3D打印,微纳3D打印

Nanoscribe首届线上用户大会于九月顺利召开,在微流控研究中,通常在针对微流控器件和芯片的快速成型制作中会结合不同制造方法。亚琛工业大学(RWTHUniversityofAachen)和不来梅大学(UniversityofBremen)的研究小组提出将三维结构的芯片结构打印到预制微纳通道中。生命科学研究的驱动力是三维打印模拟人类细胞形状和大小的支架,以推动细胞培养和组织工程学。丹麦技术大学(DTU)和德国于利希研究中心的研究团队展示了他们的成就,并强调了光刻胶如IP-L780和Nanoscribe新型柔性打印材料IP-PDMS的重要性。在微纳光学和光子学研究中,布鲁塞尔自由大学的研究人员提出了用于光纤到光纤和光纤到芯片连接的锥形光纤和低损耗波导等解决方案。阿卜杜拉国王科技大学的研究团队3D打印了一个超小型单纤光镊,以实现集成微纳光学系统。连接处理是光子集成研究的挑战。正如明斯特大学(WWU)研究人员所示,Nanoscribe微纳加工技术正在驱动研究用于集成纳米多孔电路的混合接口方法。麻省理工学院(MIT)的科学家们正在使用Nanoscribe的2PP技术制造用于高密度集成光子学的光学自由形式耦合器。南通微纳3D打印超高分辨率微观微纳3D打印技术让电子产品越来越小。

南通微纳3D打印,微纳3D打印

Nanoscribe的PhotonicProfessionalGT2双光子无掩模光刻系统的设计多功能性配合打印材料的多方面选择性,可以实现微机械元件的制作,例如用光敏聚合物,纳米颗粒复合物,或水凝胶打印的远程操控可移动微型机器人,并可以选择添加金属涂层。此外,微纳米器件也可以直接打印在不同的基材上,甚至可以直接打印于微机电系统(MEMS)。PhotonicProfessionalGT2系统可以实现精度上限的3D打印,突破了微纳米制造的限制。该打印系统的易用性和灵活性的特点配以特别广的打印材料选择使其成为理想的实验研究仪器和多用户设施

作为基于双光子聚合技术(2PP)的微细加工领域市场带领者,Nanoscribe在全球30多个国家拥有各科领域的客户群体。“我们为我们拥有特别先进的2PP技术而感到自豪,凭借我们的技术支持,我们的客户实现了一个又一个突破性创新想法。我们是一家充满活力、屡获殊荣的公司,与客户保持良好密切的合作关系是我们保持优于市场地位的关键”Nanoscribe联合创始人兼首席执行官MartinHermatschweiler表示。基于2PP微纳加工技术方面的专业知识,Nanoscribe为前列科学研究和工业创新提供强大的技术支持,并推动生物打印、微流体、微纳光学、微机械、生物医学工程和集成光子学技术等不同领域的发展。“我们非常期待加入CELLINK集团,共同探索双光子聚合技术在未来所带来的更大机遇”MartinHermatschweiler说道。从纳米结构到高精度的毫米级的物体打印展示出了微纳3D打印的出色功能。

南通微纳3D打印,微纳3D打印

QuantumXshape作为理想的快速成型制作工具,可实现通过简单工作流程进行高精度和高设计自由度的制作。作为2019年推出的头一台双光子灰度光刻(2GL®)系统QuantumX的同系列产品,QuantumXshape提升了3D微纳加工能力,即完美平衡精度和速度以实现高精度增材制造,以达到高水平的生产力和打印质量。总而言之,工业级QuantumX打印系统系列提供了从纳米到中观尺寸结构的非常先进的微制造工艺,适用于晶圆级批量加工。作为全球头一台双光子灰度光刻激光直写系统,QuantumX可以打印出具有出色形状精度和光学质量表面的高精度微纳光学聚合物母版,可适用于批量生产的流水线工业程序,例如注塑,热压花和纳米压印等加工流程,从而拓展微纳加工工业领域的应用。2GL与这些批量生产流水线工业程序的结合得益于新技术的亚微米分辨率和灵活性的特点,同时缩短创新微纳光学器件(如衍射和折射光学器件)的整体制造时间。微纳3D打印的精度能达到细观、微观和纳观(即十亿分之一米)级别。南通微纳3D打印

微纳3D打印实际是对传统制造的补充。南通微纳3D打印

生物医学领域:微纳3D打印技术在此领域的应用尤为突出,可以用于制造生物材料、医疗器械、药物载体、细胞和组织培养等。这种技术的使用有助于提高医疗诊断水平,为个性化医疗和精细医疗提供了新的可能性。航空航天领域:微纳3D打印技术能够制造航空航天领域的精密零件和复杂结构,如涡轮发动机的叶片、燃料喷射器等。这些复杂而精细的部件有助于提高航空器的性能和稳定性,对推动航空航天技术的发展具有重要意义。电子科技领域:该技术也广泛应用于电子科技领域,可以制造电子元件、电路板、太阳能电池等。这种技术的使用有助于提高电子产品的性能和降低成本,推动电子科技的快速发展。光学领域:在光学领域,微纳3D打印技术可用于制造光学元件、光学器件和光电子器件等,有助于提高光学设备的性能和降低成本。建筑领域:该技术也被用于建筑领域,制造建筑模型、建筑构件等,有助于提高建筑的设计和建造效率。娱乐领域:此外,微纳3D打印技术还在娱乐领域找到了应用,如制造玩具、游戏道具等,为娱乐行业提供了新的创意和产品。随着技术的不断进步和应用领域的不断拓宽,微纳3D打印技术的应用前景将更加广阔。同时,我们也期待看到更多创新性的应用案例。南通微纳3D打印

与微纳3D打印相关的**
信息来源于互联网 本站不为信息真实性负责