UASB厌氧反应器的工作原理:
有机废水以一定的上升流速从反应器底部进入UASB的颗粒污泥床,废水中的有机物与颗粒污泥中的微生物接触并产生沼气。沼气以微小气泡的形式释放,并在上升过程中不断合并,形成较大的气泡。在气泡的搅动和上升流速的共同作用下,颗粒污泥床发生膨胀,部分颗粒污泥处于悬浮状态,形成污泥悬浮层。废水中的有机物在底部的污泥层中开始消化,在上部的污泥悬浮层中完成消化。经厌氧消化后的废水流经三相分离器的窄缝,进入UASB的污泥沉淀区,厌氧消化液中的污泥在沉淀区内沉淀下来,又通过三相分离器的窄缝,重新返回至UASB的反应区内,继续参与有机物的厌氧消化。厌氧出水则从上部的溢流堰排出。 折流板厌氧反应器拥有良好的生物分布。石家庄流化床厌氧反应器装置
厌氧反应器出水的性质:
①有机废水经厌氧消化后,只有少量的未被消化而残留下来的有机物进入到厌氧出水中。因此,厌氧出水的COD比进水的COD要低得多。厌氧出水COD与进水COD之间的百分比,即为厌氧消化的COD去除率。
②有机物在厌氧消化过程中产生大量的CO₂,CO₂溶解在厌氧消化液中会发生电离,产生大量的HCO₃-而形成碱度,因此厌氧出水中的碱度较高。厌氧出水的pH值呈弱碱性,一般都在7.0以上。
③厌氧出水中含有一定数量的厌氧污泥,包括菌体污泥和非菌体污泥。在絮状污泥反应器的厌氧出水中,菌体污泥的含量较多,在颗粒污泥反应器的厌氧出水中,菌体污泥的含量较少。 山东内循环厌氧反应器系统塞流式厌氧反应器运行方便,故障少,管理简单,稳定性好。
产气负荷:厌氧反应器中产生的沼气以气泡的形式释放,气泡在向上运动的过程中,诸多小气泡还会合拼成大气泡。大小气泡在上升运动的过程中,会对发酵液产生搅拌作用。这种搅拌作用有利于污泥与有机废水的混合与接触,对强化传质起着重要的作用。随着沼气产量的增加,搅拌作用也加剧,传质速率加快。所以产气负荷是污泥与废水有机物之间传质的又一种重要的推动力,这一推动力的大小可以用表面产气负荷来衡量。产气负荷是指厌氧反应器单位横切面积上、每小时释放的沼气量。产气负荷可用下式计算:R气=Q/A。式中R气为表面产气负荷,m3/(m2·h);Q为单位时间内反应器的沼气产量,m3/h;A为反应器横切面积,m2。
厌氧消化条件:
厌氧消化细菌的生长繁殖需要适宜的环境条件,它们对营养物质、温度、pH值等都有一定的要求,如果有些条件得不到满足,就要采取一定的措施给予弥补:①可生化性:判断废水能否进行厌氧处理重要的指标是有机废水的可生化性。可生化性用废水的BOD与COD的比值即B/C比来衡量。②营养物质:要从产生废水的生产工艺及废水的化学成分上,了解废水的营养成分能否满足厌氧消化细菌的需要,尤其是不能缺少氮(N)和磷(P)。③有毒物质:要从排放废水的生产工艺中,了解废水中是否存在有毒物质。如果存在有毒物质,要用实验的方法,进一步了解有毒物质对厌氧消化产生抑制作用的临界浓度,并制定出消除0作用的方法。④固体悬浮物:要了解废水中的固体悬浮物和沉淀物的数量,并据此确定采用什么样的预处理工艺,以及选择什么样的厌氧反应器。⑤pH值:废水的pH值要在4.0~8.0的范围内,超出了这个范围,就要考虑对其进行调整的可行性。⑥排放温度:要了解废水排放温度能否满足厌氧消化微生物对温度的要求。如果废水温度不合适,就要对废水作加温或冷却处理。 ABR厌氧反应器运行稳定,操作灵活。
CSTR PLUS是在传统CSTR的基础上进行优化创新,提高处理效率的高效厌氧反应器,专为含有高浓度可生物降解悬浮物的有机废水的处理而设计,可将水中的溶解性有机污染物(BOD、COD)和可生物降解的固体悬浮物(如油脂、淀粉等SS)转化为绿色能源——沼气,实现沼气产量的至大和废水处理成本的至低。 CSTR PLUS可以承受非常高的COD和SS浓度,分别可达100g/L和80g/L。CSTR PLUS可以在较短的停留时间中降解污染物,产生沼气,停留时间只为6~15天(传统厌氧消化为20~30天)。IC PLUS厌氧反应器具有缓冲pH值的能力。山东内循环厌氧反应器系统
在多池并联的运行系统中,各个反应器可以按序列进水。石家庄流化床厌氧反应器装置
厌氧反应器进水管堵塞疏通方法:
如果进水中具有固形物、悬浮物或其他杂质,有可能会造成进水管的堵塞。通过触摸反应器外部与进水分配相连的进水管,感受进水管温度上的差异,可以判断是哪根进水管被堵塞。若发现有堵塞现象,疏通方法有2种:
①使被堵塞水管的阀门呈开启状态,同时关闭所有其他未堵塞水管上的阀门,利用进水压力进行疏通。
②关闭未堵塞水管的阀门,同时使被堵水管的阀门呈开启状态,再打开进水分配器上的底阀(排渣阀),利用厌氧反应器内的液压,对被堵管路进行反冲洗,因喷嘴呈锥形,堵塞物易于冲走。 石家庄流化床厌氧反应器装置