O₂分子内的化学键通常是共价键。从实验上来说,顺磁共振光谱证明O有顺磁性,还证明O有两个未成对的电子。说明原来的以双键结合的氧分子结构式不符合实际。氧气的结构如右图所示,基态O₂分子中并不存在双键,氧分子里形成了两个三电子键。氧的分子轨道电子排布式是氧气的结构,在π轨道中有不成对的单电子,所以O₂分子是所有双原子气体分子中的一种具有偶数电子同时又显示顺磁性的物质。两个氧原子进行sp轨道杂化,一个单电子填充进sp杂化轨道,成σ键,另一个单电子填充进p轨道,成π键。氧气是奇电子分子,具有顺磁性。这些反应称为氧化反应,而经过反应产生的化合物(有两种元素构成,且一种元素为氧元素)称为氧化物。加工硫化氢
过度吸氧的负作用早在19世纪中叶,英国科学家保尔·伯特首先发现,如果让动物呼吸纯氧会引起中毒,人类也同样。人如果在大于MPa(半个大气压)的纯氧环境中,对所有的细胞都0害作用,吸入时间过长,就可能发生"氧中毒"。肺部毛细管屏障被破坏,导致肺水肿、肺淤血和出血,严重影响呼吸功能,进而使各脏器缺氧而发生损害。在MPa(1个大气压)的纯氧环境中,人只能存活24小时,就会发生肺炎, 终导致呼吸衰竭、窒息而死。人在MPa(2个大气压)高压纯氧环境中, 多可停留~2小时,超过了会引起脑中毒,生命节奏紊乱,精神错乱,记忆丧失。如加入MPa(3个大气压)甚至更高的氧,人会在数分钟内发生脑细胞变性坏死,抽搐昏迷,导致死亡。加工硫化氢在金属的切割和焊接中。是用纯度93.5%~99.2%的氧气与可燃气(如乙炔)混合。
在金属的切割和焊接中是用纯度(如乙炔)混合,产生极高温度的火焰,从而使金属熔融。为了强化硝酸和***的生产过程也需要氧。不用空气而用氧与水蒸气的混合物吹人煤气气化炉中,能得到高热值的煤气。医疗用气极为重要。普利斯特里对氧气的研究普利斯特里从布莱克煅烧石灰石对CO₂的发现受到启发,利用凸透镜聚集太阳光使一些物质燃烧或分解放出气体并进行研究。1774年8月1日,普利斯特里终于成功地制得了氧气,成为化学史上有重大意义的事件。他的实验非常简单,把氧化汞放在一个充满 的玻璃瓶里,然后,把玻璃瓶倒放在 槽中,玻璃瓶完全被 充满,空气全被排除掉,氧化汞浮在 上面。然后,他用凸透镜聚集太阳光,照射到氧化汞上,使氧化汞受热。
氧气,高纯氧用于二氧化硅的化学气相沉积;作为氧化源与产生高纯水的反应剂;干法氧化;与四氟化碳混合,用于等离子刻蚀。氧的主要用途源于它能维持生命和助燃性质;在冶金工业中有广泛应用。还可用于水质处理。所有的氧化反应和燃烧过程都需要氧,例如炼钢时除硫、磷等杂质,氧和乙炔混合气燃烧时温度高达3500℃,用于钢铁的焊接和切割。玻璃制造、水泥生产、矿物焙烧、烃类加工都需要氧。液氧还用作火箭燃料,它比其他燃料更便宜。几乎所有的有机化合物,可在氧中剧烈燃生成二氧化碳与水。
氧是人体进行新陈代谢的关键物质,是人体生命活动的需要。呼吸的氧转化为人体内可利用的氧,称为血氧。血液携带血氧向全身输入能源,血氧的输送量与心脏、大脑的工作状态密切相关。心脏泵血能力越强,血氧的含量就越高;心脏冠状动脉的输血能力越强,血氧输送到心脑及全身的浓度就越高,人体重要的运行状态就越好。实验室制备氧气有多种方法,例如:高锰酸钾制氧、过氧化氢(双氧水)制氧。用高锰酸钾或氯酸钾制氧气选甲装置:固体与固体加热制气体(实验室常用说法:固固加热型)用过氧化氢制氧气选乙装置:液体与固体不加热制气体(实验室常用说法:固液常温型)高锰酸钾制取氧气。医用氧气应用于医院病人、消防员、潜水人员的呼吸气体。加工硫化氢
为了强化硝酸和 的生产过程也需要氧。加工硫化氢
3、氧气瓶使用规定(1)安装减压阀前,先将瓶阀微开一二秒钟,并检验氧气质量,合乎要求方可使用。(2)使用氧气时,不得将瓶内氧气全部用完, 少应留。以便在再装氧气时吹除灰尘和避免混进其他气体。(3)检查瓶阀时,只准用肥皂水检验。(4)氧气瓶不准改用充装其它气体使用。氧气切割是利用气体火焰的热能将工件切割处预热到燃点后,喷出高速切割氧流,使金属燃烧并放出热量而实现切割的方法。氧气切割简称气割,它具有设备简单、灵活方便、质量好等优点,它适用于切割厚度较大、尺寸较长的废钢,如大块废钢板、铸钢件、废锅炉、废钢结构架等。对废汽车解体和旧船舶解体更能发挥其灵活方便的作用,它不受场地狭窄或物件大小的局限,可以在任何场合下进行作业。除使用气割加工炼钢炉料外,还可以在废钢中割取有使用价值的板、型、管等材料,供生产使用。所以氧气切割是废钢铁加工的主要方法之一;加工硫化氢