熵不等于零,有粘滞性。两种流体的密度之和等于HeⅡ的总密度,温度降至λ点时,正常流体开始部分地转变为超流体,温度愈低,超流体的密度愈大,而正常流体的密度则愈小,在零度时,所有原子都处于凝聚状态,全部流体均为超流体。利用这个二流体模型可解释关于液氦的许多力学和热学性质。液氦热传导性HeⅠ具有普通流体的导热率,因而当减小压强时,液氦出现激烈的沸腾现象。HeⅡ的导热率要比HeⅠ高出106倍,比铜高出104倍。当温度越过λ点,HeⅠ转变为HeⅡ时,液氦从很坏的热导体突然变为到目前为止比较好的热导体。由于HeⅡ的导热率异乎寻常地高,其内部不可能出现温差,因而内部不可能汽化,即不能沸腾。当利用抽气方法减低蒸气压时,开始阶段出现激烈的沸腾,温度降低至λ点以下时,HeⅠ转变为HeⅡ,沸腾突然停止,液面平静如镜,汽化只发生在液面。正常流体的导热率与温度梯度无关,纯粹是反映物质性质的量,但HeⅡ的导热率却与温度梯度甚至容器的几何形状有关。液氦热效应热效应包括机-热和热-机两种效应。盛有液氦的两个容器用极细的毛细管C连通,注入液氦,温度低于λ点,右侧液面高于左侧,形成压强差Δp.液氦中低熵超流成分能从右侧通过毛细管转移到左侧。检验分析:仪器分析中常用的核磁共振分析仪的超导磁体需要利用液氦降温。昌邑本地氦气
在零度附近需加34个大气压才能固化。1972年,,分别称为3He-A和3He-B,它们均为超流态。液态3He和4He在,在该温度以下则分离成两相,按3He所占比例的多少分别称为浓相(含3He较多)和稀相(含3He较少),浓相浮于稀相之上(因3He比4He轻)。3He原子从浓相通过界面进入稀相时要吸热,这就是稀释致冷机的工作原理(见**温技术)。3He原子的电子总自旋为零,核自旋为1/2,故与电子一样属费米子,遵守费米-狄拉克统计,液态3He称为费米液体,正常态的液态3He的性质可用朗道的费米液体理论描述。液氦化学性质编辑氦的化学性质稳定,几乎不与其他任何元素化合。理论上的确有一些氦的化合物在极低温极高压状态下可以存在。在光谱中可以观测到HeH+(已知**强的酸),而HeH的激发态可以作为准分子存在。详见稀有气体化合物词条。液氦用途编辑氦是**不活泼的元素,而且极难液化。氦的应用主要是作为保护氦气曾被用来当做热气球和飞艇的驱动力气体、气冷式核反应堆的工作流体和**温冷冻剂等等。氦气在卫星飞船发射、导弹武器工业、低温超导研究、半导体生产等方面具有重要用途。液氦气球和飞艇氦气曾被用来当做热气球和飞艇的驱动力,氦气的密度要比空气小得多。昌邑本地氦气它在干 氦气 氦气 空气中的体积含量为5.24×10-6。
那么钠将可以很容易地和氦气反应生成稳定的Na2He。更为奇妙的是,这种化合物的构成并不需要任何化学键。南开大学王慧田教授是本次研究的共同通讯作者,据他介绍:“所发现的化合物非常奇特:氦原子通常不会形成任何化学键,而新物质的存在从根本上改变了钠原子间的化学相互作用,迫使电子集中在该结构的立方空间内,同时具有绝缘能力。”[2-3]Na2He的晶体结构,由钠原子(紫色)和氦原子(绿色)交替,共用电子(红色)存在于其间的区域。[2-3]“这并不是真的化学键,”Popov说,“但是氦能够使这一结构稳定存在。如果你把氦原子挪走,该结构将无法保持稳定。”下面是该化合物的其他表现形式,左图中粉色为钠,白色为氦;右图中钠和氦成立方体状,红色的点则是电子。[2-3]亚晶格分析表明,He的占位导致电子被局域到了原子缝隙中并在Na原子核的引力下形成多中心键,从而整个体系变成了电子盐体系。该过程中,孤立电子,Na的内层电子与He的内层1s电子和外层的2s,2p轨道产生强烈的交叠。受泡利不相容原理的影响,He的1s电子密度和外层电子轨道的分布被迫发生变化导致在Na2He形成过程中He得到了。该工作证实了高压下He会具有弱的化学活性能够与在高压下还原性增强的Na形成化合物。
有**表示,液氦制冷的优势现在比较明显:制冷效果稳定,对于成像要求条件苛刻的医用设备,这点很重要。制冷机的稳定性不如液氦,容易受到扰动影响,这对精确成像是不利的。但他也表示,随着技术的进一步发展、成熟,制冷机代替液氦制冷也并非不可能。发展高温超导材料也是另一个可能的途径。2009年10月18日在合肥举行的国际磁体技术会议上,高温超导成为与会**的热议话题。寻找质量的高温超导材料,让超导磁体能够在液氮甚至更高的温度下稳定工作,是核磁共振成像仪摆脱液氦的又一希望所在。液氦氦液化器编辑氦液化器,只能液化气态氦,不能凭空制造出氦。2010年中国采用五台G-M制冷机做冷源,成功研制出世界首台70升/天的G-M制冷机做冷源的小型氦液化器,其氦液化率达到73升/天()、87升/天()。经过对装置的真空绝热、输液管结构和运行参数的进一步优化,该装置近日运行测试,成功获得了95升/天()、105升/天()的氦液化率,这一指标达到了采用小型低温制冷机做冷源的同类小型氦液化装置的世界比较好水平。该小型氦液化装置可完成氦气室温回收和液化,在确保磁体电流引线不受影响的同时,实现液氦的零加注。利用氦气渗透性好、不可燃的特点,氦气还应用于真空检漏,如氦质谱检漏仪等。
研究开发先进的天然气提氦技术对于提高氦气生产的经济性、保障国家用氦安全和促进我国天然气提氦工业的发展具有重要意义。通过对提氦技术的分析介绍,低温冷凝法较为成熟,但能耗、成本较高;吸附法、吸收法和膜渗透法等其他提氦技术各具特点,但限于适用条件尚不能规模化工业应用。随着新材料、新技术的发展,天然气提氦技术不断改进创新,吸附法、膜渗透法等提氦工艺发展迅速,联产法、联合法工艺有着良好的应用前景,这些都为促进天然气提氦技术的发展提供了新的思路。[11-12]氦气氦气纯度氦气工业氦项目名称指标氦气纯度:≥99%氖(氢)、氧(氩)、氮、甲烷总含量,%≤1水分含量,**,≤-43℃氦气纯氦项目名称指标优等品一等品合格品氦气纯度,%≥氖含量,ppm≤152540氢含量。冷凝法:天然气提氦在工业上采用冷凝法该法工艺包括天然气的预处理净化。昌邑本地氦气
粗氦制取及氦的精制等工序,制得99.99%的纯氦气。昌邑本地氦气
氦(Helium),为稀有气体的一种。元素名来源于希腊文,原意是“太阳”[1]。1868年法国的杨森利用分光镜观察太阳表面,发现一条新的黄色谱线,并认为是属于太阳上的某个未知元素,故名氦。氦在通常情况下为无色、无味的气体,是不能在标准大气压下固化的物质。氦是**不活泼的元素。氦的应用主要是作为保护气体、气冷式核反应堆的工作流体和**温冷冻剂。此外,由于密度比空气小且性质稳定,氦还可以作为浮升气体2017年2月6日,中国南开大学的王慧田、周向锋团队及其合作者在《NatureChemistry》上发表了有关在高压条件下合成氦钠化合物——Na₂He的论文[2-3],结束了氦元素无化合物的历史,这标志着我国在稀有气体化学领域走向了**前端。中文名氦英文名Helium分子量CAS登录号7440-59-7EINECS登录号231-168-5沸点℃水溶性外观无色气体元素类型非金属单质原子序数2发现人威廉·拉姆塞有无放射性无元素符号He目录1研究历史2含量分布3物理性质▪基本信息▪超流动性▪超导现象4化学性质▪氟化物制取猜想▪离子化合物▪中性分子▪氦钠化合物5同位素6制取方法7作用用途8危险性▪引起窒息▪安全事项-氦气瓶▪氦气对人体的不良反应氦研究历史编辑1868年8月18日。昌邑本地氦气
寿光市雄风气体有限公司正式组建于2001-10-19,将通过提供以氢气,液氮,乙炔等服务于于一体的组合服务。雄风气体经营业绩遍布国内诸多地区地区,业务布局涵盖氢气,液氮,乙炔等板块。我们强化内部资源整合与业务协同,致力于氢气,液氮,乙炔等实现一体化,建立了成熟的氢气,液氮,乙炔运营及风险管理体系,累积了丰富的化工行业管理经验,拥有一大批专业人才。值得一提的是,雄风气体致力于为用户带去更为定向、专业的化工一体化解决方案,在有效降低用户成本的同时,更能凭借科学的技术让用户极大限度地挖掘雄风气体的应用潜能。
常温下具有传统塑胶、硫化橡胶之性质属热塑性原料,可循环生产或再造,适应于射出成型机、压出机加工成型与... [详情]
2025-10-30上海经营伊斯曼单体树脂上海乐莘新材料有限公司是一家经销化工原料公司,公司主要从事于热塑性弹性体和增粘... [详情]
2025-10-30