船舶建造中使用大量的钢板和型材进行焊接组装。激光等离子切割可用于船体钢板的预处理,如开坡口、裁边等操作,提高焊接质量和效率。它还能够切割出复杂的船体结构部件,如甲板横梁、舱壁扶强材等,保证构件的准确性和一致性。此外,在船舶维修中,激光等离子切割也可以用于去除生锈或损坏的部分,进行局部修复和改造。在石油、天然气开采设备以及风力发电设备的制造中,激光等离子切割也有广泛应用。例如,石油钻杆的螺纹加工、风力发电机叶片的根部连接件切割等都需要高精度的切割技术。激光等离子切割能够保证这些关键部件的质量和可靠性,提高设备的整体性能。同时,在核电站的建设中,对核级不锈钢管道的切割也采用了激光等离子切割技术,以确保管道系统的密封性和安全性。等离子切割设备主要由电源、割炬、气体供应系统、控制系统等部分组成。广东电火花等离子切割床
稳定的电源供应是保证激光器正常运行的基础。控制系统则用于调节激光器的各项参数,如功率大小、脉冲宽度、重复频率等,以及控制切割头的运动轨迹和速度。先进的控制系统还可以实现自动化操作,根据预设的程序完成复杂的切割任务,提高生产效率和产品质量的稳定性。为了形成等离子体并保护切割区域不受氧化,需要向切割区喷射工作气体。气体供给装置包括气瓶、减压阀、流量计等组件,能够精确控制气体的种类、压力和流量。常用的工作气体有氩气、氮气、氧气等,选择合适的气体对于不同的材料和切割要求非常重要。例如,切割不锈钢时常用氩气作为保护气体以防止氧化,而在切割碳钢时可能会加入适量的氧气以提高切割速度。广东电火花等离子切割床激光等离子切割产生的热量主要集中在切割区域,对周围材料的热影响较小。

激光切割凭借聚焦后的极小光斑(直径可低至 0.1mm 以下)和精细的光束控制,切割精度极高,通常可达 ±0.02 - ±0.05mm,切口平整光滑,热影响区极小(一般<0.1mm),几乎无需后续加工。而等离子切割的光斑直径相对较大(通常在 1 - 3mm),切割精度较低,一般为 ±0.1 - ±0.5mm,切口存在一定的斜度和毛刺,热影响区较大(0.5 - 2mm),需要后续打磨处理。在精细加工领域,如航空航天零部件、精密仪器外壳等,激光切割的高精度优势尤为明显;而等离子切割更适用于对精度要求不高的中厚板粗加工,如钢结构件、设备底座等。
当高能量密度的激光照射到金属材料表面时,材料吸收激光能量后温度急剧升高,部分物质被电离形成等离子体。等离子体是由大量自由电子和离子组成的高温电离气体云团,它具有极高的温度和导电性。在电场作用下,等离子体中的带电粒子会加速运动,进一步加剧了材料的加热过程。同时,等离子体还能够吹除熔融物和残渣,使切割过程更加顺畅。此外,等离子体的存在还会改变材料的物理性质,如降低其表面张力,有利于液体金属的流动和分离,从而提高切割质量。切割过程中,等离子弧产生的热量主要集中在切割区域,对周围材料的热影响较小。

在制造业转型升级的浪潮中,切割技术作为材料加工的重心环节,正经历着从传统机械切割向高能束流切割的范式转变。激光切割与等离子切割作为两大主流技术,凭借其非接触式加工、高精度、高效率等优势,已成为航空航天、新能源汽车、船舶制造等领域的标配解决方案。据统计,2023年中国激光切割设备市场规模达302.72亿元,年复合增长率超18%,而等离子切割在厚板加工领域仍占据60%以上市场份额。激光切割的重心在于通过受激辐射放大原理,将光能聚焦至微米级光斑,形成超高温热源。以CO₂激光器为例,其工作物质为混合气体,通过高频放电激发产生波长10.6μm的激光束,经反射镜组聚焦后,功率密度可达10⁸-10¹⁰W/cm²。高速等离子切割技术在批量生产中展现出了惊人的效率优势。广东自动等离子切割操作教程
等离子切割产生的热影响区小,对材料性能影响小。广东电火花等离子切割床
控制系统是激光切割设备的 “大脑”,负责控制激光源的输出功率、切割速度、运动轨迹等参数,实现自动化切割。目前主流的控制系统采用工业计算机或 PLC,支持 CAD/CAM 软件导入,可实现复杂零件的自动编程和切割。同时,控制系统还具备故障自诊断、远程监控等功能,提高设备的运行稳定性和维护效率。辅助系统包括冷却系统、除尘系统、辅助气体供应系统等。冷却系统用于冷却激光源、光学系统等部件,避免因温度过高影响设备性能;除尘系统用于收集切割过程中产生的粉尘和烟雾,保护环境和操作人员健康;辅助气体供应系统负责提供切割所需的辅助气体(如氮气、氧气、氩气等),并控制气体的压力和流量,提高切割质量和效率。广东电火花等离子切割床