在物位侧量中,尽管各种测量方法所用的技术各不相同,但可把它们归纳为以下几种测量原理[1]:(1)基于力学原理敏感元件所受到的力(压力)的大小与物位成正比,它包括静压式、浮力式和重锤式物位测量等。(2)基于相对变化原理当物位变化时,物位与容器底部或顶部的距离发生改变,通过测量距离的相对变化可获得物位的信息。这种测量原理包括声学法、微波法和光学法等。(3)基于某强度性物理量随物位的升高而增加原理例如对射线的吸收强度,电容器的电容量等。超声波物位计和超声波液位计的区别。四川智能化超声波物位计概念
超声波液位计工作原理是由超声波换能器(探头)发出高频脉冲声波遇到被测物位(物料)表面被反射折回反射回波被换能器接收转换成电信号.声波的传播时间与声波的发出到物体表面的距离成正比.声波传输距离S与声速C和声传输时间T的关系可用公式表示:S=C×T/2.由于发射的超声波脉冲有一定的宽度,使得距离换能器较近的小段区域内的反射波与发射波重迭,无法识别,不能测量其距离值。这个区域称为测量盲区。盲区的大小与超声波物位计的型号有关。探头部分发射出超声波,超声波遇到与空气密度相差较大的介质会行成反射,反射波被探头部分再接收,探头到液(物)面的距离和超声波经过的时间成比例陕西尾矿库监测超声波物位计案例超声波物位计的参数。
超声波物位传感器工作原理是:工作时向液面或粉体表面发射一束超声波,被其反射后,传感器再接收此反射波。设声速一定,根据声波往返的时间就可以计算出传吸器到液面(粉体表面)的距离,即测量出液面(粉体表面)位置。其敏感元件有二种,一种是由线圈、磁铁和膜构成的,另一种是由压电式磁致伸缩材料构成的。前者产生的是10KHz的超声波,后者产生的是20~40Khz的超声波。超声波的频率愈低,随着距离的衰减愈小,但是反射效率也小。因此,应根据测量范围、物位表面状况和周围环境条件来决定所使用的超声波传感器。高性能的超声波物位传感器由微机控制。以紧凑的硬件进行特性调整和功能检测。它可以准确地区别信号波和噪声,因此,可以在搅拌器工作的任况下测量物位。此外,在高温或吹风时也可检测物位,特别是可以检测高粘度液体和粉状体的物位。
超声波液位计是由微处理器控制的**于连续性液位测量的数字物位仪表,具有安全、清洁、精度高、寿命长、稳定可靠、安装维护方便、读数简捷等特点,在化工、水处理、水利、食品、医药等行业的液位测量中应用***。超声波液位计的换能器(探头)发出高频超声波脉冲,当遇到被测液位表面时,该声波被反射回来,部分反射回波被换能器(探头)接收并转换成电信号。超声波液位计利用声波发射与接收的时间差,以及声波传播速度来计算液面的高度。超声波液位计采用无接触测量技术,能稳定可靠地应用于各种储罐、槽池中的连续性液位测量。超声波物位计用于什么方面?
20世纪初,电子学的发展使人们能利用某些材料的压电效应(见压电性)和磁致伸缩效应制成各种机电换能器(包括和)。1917年,法国物理学家P·朗之万用天然压电石英制成了夹心式超声换能器,并用来探查海底的潜艇。之后,随着***和国民经济各部门中超声应用的不断发展,又出现更大超声功率的磁致伸缩换能器以及各种不同用途的电动型、电磁力型、静电换能器等多种超声换能器。而材料科学的发展,使得应用*****的压电换能器也由天然压电晶体发展到机电耦合系数高、价格低廉、性能良好的压电陶瓷、人工压电单晶、压电半导体以及塑料压电薄膜等(见电声换能器)。产生和检测超声波的频率,也由几十千赫提高到上千兆赫。产生和接收的波型也由单纯的纵波扩大为横波、扭转波、弯曲波、表面波等。如频率为几十兆赫到上千兆赫的微型表面波叉指换能器和体波换能器都已成功地用于雷达、电子通信和成像技术等方面。为了物质结构等基础研究的需要,超声波的产生和接收还在向更高频率发展。例如在媒质端面直接蒸发或溅射上压电薄膜(ZnO、CdS等)或磁致伸缩的铁磁性薄膜,就可获得数百兆赫直至几万兆赫的超声;利用凹型的微波谐振腔,可在石英棒内获得几万兆赫的超声。此外。超声波物位计在尾矿库中的作用。陕西桥梁安全监测超声波物位计案例
超声波物位计的发展历程。四川智能化超声波物位计概念
用超声波测量金属零件的厚度,具有测量精度高、操作简单、可连续自动检测等优点。超声波测厚常用脉冲回波法。此方法的工作原理如图所示。超声波探头与被测物体表面接触,主控制器用一定频率的脉冲信号激励压电式探头,使之产生重复的超声波脉冲。脉冲被传到被测工件另一方面时被反射回来,被同一探头接收。空气超声探头发射超声脉冲,到达被测物时,被反射回来,并被另一只空气超声探头所接收。测出从发射超声波脉冲到接收超声波脉冲所需的时间t,再乘以空气的声速(340m/s),就是超声脉冲在被测距离所经历的路程,除以2就得到距离。四川智能化超声波物位计概念