高硬度与强度高度氧化锆陶瓷的硬度极高,接近莫氏硬度9.5,与天然钻石相当,耐磨性能较好。它拥有很高的抗弯强度和抗压强度,可以与钢铁相媲美,甚至超过某些金属材料。高耐磨性与耐腐蚀性氧化锆陶瓷具有出色的耐磨性,其摩擦系数低,磨损率很低。它还具有良好的耐腐蚀性,能够抵抗酸、碱和其他化学介质的侵蚀,适合在恶劣环境中使用。优异的绝缘性能氧化锆陶瓷在常温下是一种很好的绝缘材料,具有良好的绝缘性能和电介质性能。良好的生物相容性氧化锆陶瓷对人体组织有良好的生物相容性,不会引起过敏反应或其他不良生物反应。相变增韧与微裂纹增韧氧化锆陶瓷具有相变增韧和微裂纹增韧机制,这使其在所有陶瓷中具有较高的断裂韧性无锡北瓷的光伏陶瓷,为光伏产业可持续发展贡献力量。江苏氮化硼陶瓷
湿度敏感特性湿敏半导体陶瓷:这类陶瓷的电导率随湿度变化而明显变化。根据电阻率随湿度的变化,可分为负特性湿敏半导瓷(电阻率随湿度增加而下降)和正特性湿敏半导瓷(电阻率随湿度增加而增加)。湿敏半导体陶瓷适用于湿度的测量和控制。电场敏感特性压敏陶瓷:这类陶瓷的电阻值随着外加电压的变化而呈现明显的非线性变化。在某一临界电压下,压敏电阻陶瓷的电阻值非常高,几乎没有电流;但当超过这一临界电压时,电阻将急剧降低,并有电流通过。压敏陶瓷主要用于浪涌吸收、过压保护等场合。氮化硼陶瓷欢迎选购工业陶瓷件抗压强度大,承受重压,不变形不损坏。
出色的热学性能:耐高温:半导体陶瓷能够在高温环境下稳定工作,适用于高温炉、发动机等高温设备。低热膨胀系数:热膨胀系数小,热稳定性好,减少因温度变化引起的热应力。化学稳定性:耐腐蚀:对酸、碱、盐等化学物质具有良好的耐腐蚀性,适用于化工、环保等领域。抗氧化:在高温氧化环境中能形成保护膜,阻止进一步氧化。多功能性:催化性能:某些半导体陶瓷具有催化活性,可用于催化反应。光电性能:可用于光电器件,如太阳能电池、光电探测器等。
温度传感器:半导体陶瓷的温度敏感特性使其成为制作温度传感器的理想材料。通过测量陶瓷材料的电阻、电容等电学参数随温度的变化,可以精确地检测和控制温度。例如,在工业生产中,温度传感器可用于监测炉温、反应温度等关键参数,确保生产过程的稳定性和安全性。热敏电阻:利用半导体陶瓷的温度敏感特性,可以制作热敏电阻。热敏电阻具有灵敏度高、响应速度快等优点,广泛应用于温度测量、温度控制、温度补偿等领域。气体传感器:半导体陶瓷对特定气体具有敏感特性,当气体浓度发生变化时,陶瓷材料的电学参数也会相应改变。因此,半导体陶瓷可用于制作气体传感器,用于检测有毒有害气体、可燃气体等。例如,在煤矿、化工、环保等领域,气体传感器可用于监测瓦斯、一氧化碳、硫化氢等气体的浓度,预防事故发生。空气质量监测:半导体陶瓷气体传感器还可用于空气质量监测,检测空气中的污染物浓度,为环境保护和公共健康提供数据支持。考虑光伏材料升级?无锡北瓷陶瓷为您提供新的解决方案。
加热与电热转换:陶瓷发热体:某些半导体陶瓷在电场作用下能产生热量,具有良好的电热转换性能。例如,碳化硅陶瓷发热体,用于工业电炉、陶瓷窑炉、家用电暖器等加热设备中。生物医学检测:生物传感器:利用半导体陶瓷的气敏或压敏等特性,可制作生物传感器,用于检测生物体内呼出气体中的特定成分,为疾病诊断提供依据。环境与工业监测:湿敏陶瓷:电导率随湿度呈明显变化的陶瓷,用于湿度的测量和控制,广泛应用于工业、农业、建筑等领域。高频与高速电路:半导体陶瓷电路板:具有高频特性、强度高度、高硬度、低损耗和低介电常数等优点,特别适合用于高频、高速、高密度的电路设计。无锡北瓷的光伏陶瓷,助力光伏企业优化生产流程。江苏氮化硼陶瓷
无锡北瓷的光伏陶瓷,满足光伏产业对材料的严格要求。江苏氮化硼陶瓷
热压铸成型:在较高温度下(60~100℃)使陶瓷粉体与粘结剂(石蜡)混合,获得热压铸用的料浆,浆料在压缩空气的作用下注入金属模具,保压冷却,脱模得到蜡坯,蜡坯在惰性粉料保护下脱蜡后得到素坯,素坯再经高温烧结成瓷。热压铸成型的生坯尺寸精确,内部结构均匀,模具磨损较小,生产效率高,适合各种原料。但蜡浆和模具的温度需严格控制,否则会引起欠注或变形,因此不适合用来制造大型部件,同时两步烧成工艺较为复杂,能耗较高。流延成型:把陶瓷粉料与大量的有机粘结剂、增塑剂、分散剂等充分混合,得到可以流动的粘稠浆料,把浆料加入流延机的料斗,用刮刀控制厚度,经加料嘴向传送带流出,烘干后得到膜坯。此工艺适合制备薄膜材料,但要求严格控制工艺参数,否则易造成起皮、条纹、薄膜强度低或不易剥离等缺陷。此外,所用的有机物有毒性,会产生环境污染,应尽可能采用无毒或少毒体系。江苏氮化硼陶瓷
低热导率,优异隔热性氧化锆陶瓷的室温热导率只为1.5-3.0W/(m·K)(远低于金属铝的237W/(m・K)、氧化铝陶瓷的20-30W/(m・K)),且高温下热导率进一步降低,是理想的隔热材料。优势场景:高温隔热部件(如汽车尾气净化器载体、工业窑炉内衬)、电子封装散热调控——汽车尾气净化器用氧化锆载体,可减少热量散失,快速提升催化剂活性温度(200-300℃),降低尾气排放;电子封装中,可作为“热屏障”,避免局部高温传导至敏感芯片。高热稳定性与抗热震性氧化锆陶瓷的熔点高达2715℃,长期使用温度可达1200-1600℃(根据稳定剂类型调整),且热膨胀系数(9-11×10⁻⁶/℃)与金属接近,...