第四代NVIDIANVLink在全归约操作上提供了3倍的带宽提升,在7倍PCIeGen5带宽下,为多GPUIO提供了900GB/sec的总带宽,比上一代NVLink增加了50%的总带宽。第三代NVSwitch技术包括驻留在节点内部和外部的交换机,用于连接服务器、集群和数据中心环境中的多个GPU。节点内部的每个NVSwitch提供64个第四代NVLink链路端口,以加速多GPU连接。交换机的总吞吐率从上一代的。新的第三代NVSwitch技术也为多播和NVIDIASHARP网络内精简的集群操作提供了硬件加速。新的NVLinkSwitch系统互连技术和新的基于第三代NVSwitch技术的第二级NVLink交换机引入地址空间隔离和保护,使得多达32个节点或256个GPU可以通过NVLink以2:1的锥形胖树拓扑连接。这些相连的节点能够提供TB/sec的全连接带宽,并且能够提供难以置信的一个exaFlop(百亿亿次浮点运算)的FP8稀疏AI计算。PCIeGen5提供了128GB/sec的总带宽(各个方向上为64GB/s),而Gen4PCIe提供了64GB/sec的总带宽(各个方向上为32GB/sec)。PCIeGen5使H100可以与性能高的x86CPU和SmartNICs/DPU(数据处理单元)接口。H100 GPU 具备高效的数据传输能力。湖南H100GPU distributor
L2CacheHBM3内存控制器GH100GPU的完整实现8GPUs9TPCs/GPU(共72TPCs)2SMs/TPC(共144SMs)128FP32CUDA/SM4个第四代张量/SM6HBM3/HBM2e堆栈,12个512位内存控制器60MBL2Cache第四代NVLink和PCIeGen5H100SM架构引入FP8新的Transformer引擎新的DPX指令H100张量架构专门用于矩阵乘和累加(MMA)数学运算的高性能计算,为AI和HPC应用提供了开创性的性能。H100中新的第四代TensorCore架构提供了每SM的原始稠密和稀疏矩阵数学吞吐量的两倍支持FP8、FP16、BF16、TF32、FP64、INT8等MMA数据类型。新的TensorCores还具有更**的数据管理,节省了高达30%的操作数交付能力。FP8数据格式与FP16相比,FP8的数据存储需求减半,吞吐量提高一倍。新的TransformerEngine(在下面的章节中进行阐述)同时使用FP8和FP16两种精度,以减少内存占用和提高性能,同时对大型语言和其他模型仍然保持精度。用于加速动态规划(“DynamicProgramming”)的DPX指令新引入的DPX指令为许多DP算法的内循环提供了高等融合操作数的支持,使得动态规划算法的性能相比于AmpereGPU高提升了7倍。L1数据cache和共享内存结合将L1数据cache和共享内存功能合并到单个内存块中简化了编程。湖南H100GPU distributorH100 GPU 提供高效的功耗管理。
因此线程可以自由地执行其他**的工作。②终线程需要其他所有线程产生的数据。在这一点上,他们做一个"等待",直到每个线程都有"抵达"的信号。-***是允许提前到达的线程在等待时执行**的工作。-等待的线程会在共享内存中的屏障对象上自转(spin)(我理解的就是这些等待的线程在等待的时候无法执行其他工作)也是一个分裂的屏障,但不对到达的线程计数,同时也对事务进行计数。为写入共享内存引入一个新的命令,同时传递要写入的数据和事务计数。事务计数本质上是对字节计数异步事务屏障会在W**t命令处阻塞线程,直到所有生产者线程都执行了一个Arrive,所有事务计数之和达到期望值。异步事务屏障是异步内存拷贝或数据交换的一种强有力的新原语。集群可以进行线程块到线程块通信,进行隐含同步的数据交换,集群能力建立在异步事务屏障之上。H100HBM和L2cache内存架构HBM存储器由内存堆栈组成,位于与GPU相同的物理封装上,与传统的GDDR5/6内存相比,提供了可观的功耗和面积节省,允许更多的GPU被安装在系统中。
以优化内存和缓存的使用和性能。H100HBM3和HBM2eDRAM子系统带宽性能H100L2cache采用分区耦合结构(partitionedcrossbarstructure)对与分区直接相连的GPC中的子模块的访存数据进行定位和高速缓存。L2cache驻留控制优化了容量利用率,允许程序员有选择地管理应该保留在缓存中或被驱逐的数据。内存子系统RAS特征RAS:Reliability,Av**lable,Serviceability(可靠性,可获得性)ECC存储弹性(MemoryResiliency)H100HBM3/2e存储子系统支持单纠错双检错(SECDED)纠错码(ECC)来保护数据。H100的HBM3/2e存储器支持"边带ECC",其中一个与主HBM存储器分开的小的存储区域用于ECC位内存行重映射H100HBM3/HBM2e子系统可以将产生错误ECC码的内存单元置为失效。并使用行重映射逻辑将其在启动时替换为保留的已知正确的行每个HBM3/HBM2e内存块中的若干内存行被预留为备用行,当需要替换被判定为坏的行时可以被。第二代安全MIGMIG技术允许将GPU划分为多达7个GPU事件(instance),以优化GPU利用率,并在不同客户端(例如VM、容器和进程等)之间提供一个被定义的QoS和隔离,在为客户端提供增强的安全性和保证GPU利用率之外,还确保一个客户端不受其他客户端的工作和调度的影响。H100 GPU 拥有 8192 个 CUDA。
H100 GPU 采用了 NVIDIA 的架构技术,其架构采用 Ampere 架构,使其在性能和能效方面都达到了一个新的高度。H100 GPU 具有 8192 个 CUDA ,能够提供极高的并行处理能力,对于需要大量计算资源的任务,如深度学习训练和科学计算,H100 GPU 能够提升效率。其基础时钟频率为 1410 MHz,增强时钟频率可达 1665 MHz,确保在高负载下依然能够提供稳定的性能输出,其 Tensor Core 性能可达 312 TFLOPS,特别适合深度学习和神经网络训练等需要大量矩阵运算的任务,极大地提升了计算效率。H100 GPU 提供 312 TFLOPS 的 Tensor Core 性能。湖南H100GPU distributor
H100 GPU 特惠价格,先到先得。湖南H100GPU distributor
H100 GPU 在边缘计算中的应用也非常多。其高性能计算能力和低功耗设计使其非常适合用于边缘计算。H100 GPU 的强大并行处理能力可以高效处理实时数据,提升应用的响应速度和可靠性。无论是在智能制造、智慧城市还是物联网应用中,H100 GPU 都能提升数据处理效率,满足边缘计算的需求。其紧凑设计和高能效比为边缘计算设备提供了理想的硬件支持,是边缘计算领域的重要组成部分。
在游戏开发领域,H100 GPU 提供了强大的图形处理能力和计算性能。它能够实现复杂和逼真的游戏画面,提高游戏的视觉效果和玩家体验。H100 GPU 的并行处理单元可以高效处理大量图形和物理运算,减少延迟和卡顿现象。对于开发者来说,H100 GPU 的稳定性和高能效为长时间的开发和测试提供了可靠保障,助力开发者创造出更具创意和吸引力的游戏作品,是游戏开发的理想选择。 湖南H100GPU distributor