H100 GPU 还具备强大的扩展性,支持多 GPU 配置。通过 NVIDIA NVLink 技术,用户可以将多块 H100 GPU 连接在一起,形成一个强大的计算集群。NVLink 提供高带宽、低延迟的 GPU 互连,确保多 GPU 系统中的数据传输高效、稳定。这种扩展性使得 H100 GPU 可以灵活应对不同规模的计算需求,从单节点应用到大规模分布式计算环境,都能够提供出色的性能和效率。在软件支持方面,H100 GPU 配套了 NVIDIA 全的开发工具和软件生态系统。NVIDIA 提供了包括 CUDA Toolkit、cuDNN、TensorRT 等在内的多种开发工具,帮助开发者在 H100 GPU 上快速开发和优化应用。此外,H100 GPU 还支持 NVIDIA 的 NGC(NVIDIA GPU Cloud)容器平台,开发者可以通过 NGC 轻松获取优化的深度学习、机器学习和高性能计算容器,加速开发流程,提升应用性能和部署效率。H100 GPU 提供高效的计算资源利用率。河南80GH100GPU
对于科学计算而言,H100 GPU 提供了强大的计算能力。它能够高效处候模拟、基因组学研究、天体物理学计算等复杂的科学任务。H100 GPU 的大规模并行处理单元和高带宽内存可以提升计算效率和精度,使科学家能够更快地获得研究成果。其稳定性和可靠性也为长时间计算任务提供了坚实保障,是科学计算领域不可或缺的工具。H100 GPU 的高能效设计不仅提升了性能,还为科研机构节省了大量的能源成本。其灵活的扩展性和兼容性使得科学计算能够根据需要进行调整和优化,从而更好地支持前沿科学研究和创新发现。北京H100GPU stockH100 GPU 支持多种虚拟化技术。
使用TSMC4nm工艺定制800亿个晶体管,814mm²芯片面积。NVIDIAGraceHopperSuperchipCPU+GPU架构NVIDIAGraceCPU:利用ARM架构的灵活性,创建了从底层设计的CPU和服务器架构,用于加速计算。H100:通过NVIDIA的超高速片间互连与Grace配对,能提供900GB/s的带宽,比PCIeGen5快了7倍目录H100GPU主要特征基于H100的系统和板卡H100张量架构FP8数据格式用于加速动态规划(“DynamicProgramming”)的DPX指令L1数据cache和共享内存结合H100GPU层次结构和异步性改进线程块集群(ThreadBlockClusters)分布式共享内存(DSMEM)异步执行H100HBM和L2cache内存架构H100HBM3和HBM2eDRAM子系统H100L2cache内存子系统RAS特征第二代安全MIGTransformer引擎第四代NVLink和NVLink网络第三代NVSwitch新的NVLink交换系统PCIeGen5安全性增强和保密计算H100video/IO特征H100GPU主要特征新的流式多处理器(StreamingMultiprocessor,SM)第四代张量:片间通信速率提高了6倍(包括单个SM加速、额外的SM数量、更高的时钟);在等效数据类型上提供了2倍的矩阵乘加。MatrixMultiply-Accumulate,MMA)计算速率,相比于之前的16位浮点运算,使用新的FP8数据类型使速率提高了4倍。
用于训练、推理和分析。配置了Bluefield-3,NDRInfiniBand和第二代MIG技术单个DGXH100系统提供了16petaFLOPS(千万亿次浮点运算)(FP16稀疏AI计算性能)。通过将多个DGXH100系统连接组成集群(称为DGXPODs或DGXSuperPODs),可以很容易地扩大这种性能。DGXSuperPOD从32个DGXH100系统开始,被称为"可扩展单元"集成了256个H100GPU,这些GPU通过基于第三代NVSwitch技术的新的二级NVLink交换机连接,提供了1exaFLOP的FP8稀疏AI计算性能。同时支持无线带宽(InifiniBand,IB)和NVLINKSwitch网络选项。HGXH100通过NVLink和NVSwitch提供的高速互连,HGXH100将多个H100结合起来,使其能创建世界上强大的可扩展服务器。HGXH100可作为服务器构建模块,以集成底板的形式在4个或8个H100GPU配置中使用。H100CNXConvergedAcceleratorNVIDIAH100CNX将NVIDIAH100GPU的强大功能与NVIDIA®ConnectX-7SmartNIC的**组网能力相结合,可提供高达400Gb/s的带宽包括NVIDIAASAP2(加速交换和分组处理)等创新功能,以及用于TLS/IPsec/MACsec加密/的在线硬件加速。这种独特的架构为GPU驱动的I/O密集型工作负载提供了前所未有的性能,如在企业数据中心进行分布式AI训练,或在边缘进行5G信号处理等。H100 GPU 的单精度浮点计算能力为 19.5 TFLOPS。
ITMALL.sale 始终坚持以客户为中心的服务理念,不断提升自身的服务水平和产品质量。通过建立严格的质量控制体系,ITMALL.sale 确保每一台 H100 GPU 产品都经过严格检测,确保性能稳定和可靠。ITMALL.sale 还与多家企业建立了长期合作关系,凭借良好的信誉和质量的服务赢得了客户的信赖。ITMALL.sale 的目标是成为 H100 GPU 市场的,为客户提供质量的产品和服务,助力客户业务的快速发展。ITMALL.sale 以其质量的服务和产品在市场上赢得了良好的口碑。作为 H100 GPU 的专业代理商,ITMALL.sale 不仅能够提供具有竞争力的价格,还能够确保产品的质量和可靠性。通过与 NVIDIA 的紧密合作,ITMALL.sale 能够及时获取的产品信息和技术更新,为客户提供的 H100 GPU 产品和技术解决方案。无论是企业级客户还是个人用户,都能够在 ITMALL.sale 找到满足其需求的 H100 GPU 产品和服务。H100 GPU 适用于大数据分析任务。河南80GH100GPU
H100 GPU 特惠销售,快来选购。河南80GH100GPU
它可能每年产生$500mm++的经常性收入。ChatGPT运行在GPT-4和API上。GPT-4和API需要GPU才能运行。很多。OpenAI希望为ChatGPT及其API发布更多功能,但他们不能,因为他们无法访问足够的GPU。他们通过Microsoft/Azure购买了很多NvidiaGPU。具体来说,他们想要的GPU是NvidiaH100GPU。为了制造H100SXMGPU,Nvidia使用台积电进行制造,并使用台积电的CoWoS封装技术,并使用主要来自SK海力士的HBM3。OpenAI并不是***一家想要GPU的公司(但他们是产品市场契合度强的公司)。其他公司也希望训练大型AI模型。其中一些用例是有意义的,但有些用例更多的是驱动的,不太可能使产品与市场契合。这推高了需求。此外,一些公司担心将来无法访问GPU,因此即使他们还不需要它们,他们现在也会下订单。因此,“对供应短缺的预期会造成更多的供应短缺”正在发生。GPU需求的另一个主要贡献者来自想要创建新的LLM的公司。以下是关于想要构建新LLM的公司对GPU需求的故事:公司高管或创始人知道人工智能领域有很大的机会。也许他们是一家想要在自己的数据上训练LLM并在外部使用它或出售访问权限的企业,或者他们是一家想要构建LLM并出售访问权限的初创公司。他们知道他们需要GPU来训练大型模型。河南80GH100GPU