光学测厚方法集光学 、机械、电子、计算机图像处理技术为一体,以其光波长为测量基准,从原理上保证了纳米级的测量精度。同时,光学测厚作为非接触式的测量方法,被广泛应用于精密元件表面形貌及厚度的无损测量。其中,薄膜厚度光学测量方法按光吸收、透反射、偏振和干涉等光学原理可分为分光光度法、椭圆偏振法、干涉法等多种测量方法。不同的测量方法,其适用范围各有侧重,褒贬不一。因此结合多种测量方法的多通道式复合测量法也有研究,如椭圆偏振法和光度法结合的光谱椭偏法,彩色共焦光谱干涉和白光显微干涉的结合法等。白光干涉膜厚测量技术可以实现对薄膜的在线检测和控制;薄膜干涉膜厚仪的用途和特点
常用白光垂直扫描干涉系统的原理 :入射的白光光束通过半反半透镜进入到显微干涉物镜后,被分光镜分成两部分,一个部分入射到固定的参考镜,一部分入射到样品表面,当参考镜表面和样品表面的反射光通过分光镜后,再次汇聚发生干涉,干涉光通过透镜后,利用电荷耦合器(CCD)可探测整个视场内双白光光束的干涉图像。利用Z向精密位移台带动干涉镜头或样品台Z向扫描,可获得一系列的干涉图像。根据干涉图像序列中对应点的光强随光程差变化曲线,可得该点的Z向相对位移;然后,由CCD图像中每个像素点光强最大值对应的Z向位置获得被测样品表面的三维形貌。国内膜厚仪行业应用白光干涉膜厚测量技术可以实现对薄膜的大范围测量和分析。
微纳制造技术的发展推动着检测技术向微纳领域进军 ,微结构和薄膜结构作为微纳器件中的重要组成部分,在半导体、航天航空、医学、现代制造等领域得到了广泛的应用,由于其微小和精细的特征,传统检测方法不能满足要求。白光干涉法具有非接触、无损伤、高精度等特点,被广泛应用在微纳检测领域,另外光谱测量具有高效率、测量速度快的优点。因此,本文提出了白光干涉光谱测量方法并搭建了测量系统。和传统白光扫描干涉方法相比,其特点是具有较强的环境噪声抵御能力,并且测量速度较快。
白光干涉频域解调顾名思义是在频域分析解调信号 ,测量装置与时域解调装置几乎相同,只需把光强测量装置换为光谱仪或者是CCD ,接收到的信号是光强随着光波长的分布。由于时域解调中接收到的信号是一定范围内所有波长的光强叠加,因此将频谱信号中各个波长的光强叠加,即可得到与它对应的时域接收信号。由此可见,频域的白光干涉条纹不仅包含了时域白光干涉条纹的所有信息,还包含了时域干涉条纹中没有的波长信息。在频域干涉中,当两束相干光的光程差远大于光源的相干长度时,仍可以在光谱仪上观察到频域干涉条纹。这是由于光谱仪内部的光栅具有分光作用,能够将宽谱光变成窄带光谱,从而增加了光谱的相干长度。这一解调技术的优点就是在整个测量系统中没有使用机械扫描部件,从而在测量的稳定性和可靠性上得到很大的提高。常见的频域解调方法有峰峰值检测法、傅里叶解调法以及傅里叶变换白光干涉解调法等。白光干涉膜厚仪需要进行校准,并选择合适的标准样品。
确定靶丸折射率及厚度的算法 ,由于干涉光谱信号与膜的光参量直接相关,这里主要考虑光谱分析的方法根据测量膜的反射或透射光谱进行分析计算,可获得膜的厚度、折射率等参数。根据光谱信号分析计算膜折射率及厚度的方法主要有极值法和包络法、全光谱拟合法。极值法测量膜厚度主要是根据薄膜反射或透射光谱曲线上的波峰的位置来计算,对于弱色散介质,折射率为恒定值,根据两个或两个以上的极大值点的位置,求得膜的光学厚度,若已知膜折射率即可求解膜的厚度;对于强色散介质,首先利用极值点求出膜厚度的初始值。薄膜厚度是一恒定不变值,可根据极大值点位置的光学厚度关系式获得入射波长和折射率的对应关系,再依据薄膜材质的色散特性,引入合适的色散模型,常用的色散模型有cauchy模型、Selimeier模型、Lorenz模型等,利用折射率与入射波长的关系式,通过二乘法拟合得到色散模型的系数,即可解得任意入射波长下的折射率。标准样品的选择和使用对于保持仪器准确度至关重要。国内膜厚仪行业应用
随着技术的进步和应用领域的拓展,白光干涉膜厚仪的性能和功能将不断提高和扩展;薄膜干涉膜厚仪的用途和特点
本章主要介绍了基于白光反射光谱和白光垂直扫描干涉联用的靶丸壳层折射率测量方法 。该方法利用白光反射光谱测量靶丸壳层光学厚度,利用白光垂直扫描干涉技术测量光线通过靶丸壳层后的光程增量,二者联立即可求得靶丸折射率和厚度数据。在实验数据处理方面,为解决白光干涉光谱中波峰位置难以精确确定和单极值点判读可能存在干涉级次误差的问题,提出MATLAB曲线拟合测定极值点波长以及利用干涉级次连续性进行干涉级次判定的数据处理方法。应用碳氢(CH)薄膜对测量结果的可靠性进行了实验验证。薄膜干涉膜厚仪的用途和特点