输出滤波电感参数计算:在移相全桥变换器中,原边的交流方波经过高频变压器和全桥整流后,得到的是高频直流方波,方波的频率是原边开关频率的2倍。一般来说,为了减小输出电流的脉动值,是希望滤波电感的值越大越好。但是电感值过大意味着电感的体积和重量增大,并且整个变换器的动态响应速度会变慢。在工程计算中,一般取输出滤波电感电流的比较大脉动值为输出电流的20%。通过滤波电感的电流为 60A,电流时单向流动的,具有较大的直流分量并叠加有 一个较小的频率为2fs 的交变分量,所以电感磁芯的比较大工作磁密可以取到较高值。 由于滤波电感上电流主要为直流分量,集肤效应影响不是很大,因此可以选用线径 较大的导线或厚度较大的扁铜线绕制,只要保证导电面积足够即可。***即是根据 导线线径核算磁芯的窗口面积是否合适,经过反复核算直到选择出合适的磁芯。基于电光效应,在电场或电压的作用下透过某些物质的光会发生双折射。重庆功率分析仪电压传感器联系方式
输出滤波电容 C 和输出电压中的交流分量关系很大。由于 C 和负载并联,再加 上容抗的频率特性, 频率较高的电流成分主要通过 C,负载中流过的很少。C 两端的 电压Vc 除直流分量Vo 外,还有交流分量,与输出电压纹波大小对应。为了减小纹波, 加大 C 是有好处的,但过分加大没有必要。Lf是输出滤波电感量,fs是开关频率,Vpp是输入直流电压比较大,脉动值,Vo(min)是输出电压最小值,Vin(max)是输入电压最小值,K是高频变压器变比,VL是输出滤波电感纹波压降,VD是输出整流二极管的通态管压降。代入各个参数值计算可得cf=9.4UF。宁波高精度电压传感器现货电压传感器相对于传统测量技术的优势。
移相全桥变换器在工作时,通过与开关管并联的谐振电容和原边谐振电感谐振,来实现开关管的软开关。主电路拓扑结构如图2-4所示。图中T1和T2为超前臂开关管,T3和T4为滞后臂开关管;C1和C2分别为T1和T2的并联谐振电容,且C1=C2=Clead;C3和C4分别为T3和T4的并联谐振电容,且C3=C4=Clag;D1~D4分别为T1~T4的反并联二极管;Lr为原边谐振电感;TM为高频变压器;DR1~DR4为输出整流二极管;Lf、L、Ca和Cb分别为输出滤波电感和滤波电容;Z为输出负载。
根据实际工作过程分析,超前桥臂上开关管开通过程中,原边电路保持向负载端输送能量,则负载端滤波电感等效于和原边谐振电感串联,这样对超前桥臂上两个谐振电容充放电的能量由原边谐振电感和负载端滤波电感共同提供,这样能量关系式很容易满足[6]。时间关系式只需要适当增大死区时间即可,超前桥臂上开关管的零电压开通很容易实现。滞后桥臂上开关管开通过程中,桥臂上谐振电容的充放电能量**来自于谐振电感,并且在此过程中电源相当于是负载吸收谐振电感中的储能,电流处于减小的状态,从而滞后桥臂上开关管的零电压开通实现难度增大。分压式电压传感器测量简单,测量精度较高,但对分压电阻要求具有稳定的温度特性。
对于前端储能电容还需要考虑的参数是其耐压值,直流母线上电压峰值为373v,留一定裕量,可以选择耐压值为500v的电解电容作为储能电容。在电力电子变换和控制电路中,都是以各种电力半导体器件为基础的。我们在设计电路时,也有很多可供选择的电力半导体器件,BJT、MOSFET、GTO、GTR、IGBT等。但是每种元件都有其自身特点以及**适合应用场合。例如MOSFET开关频率高,动态响应速度快,但其电流容量相对小,耐压能力低,适用于低功率、高频的场合[13][14]。门级可关断晶闸管具有自关断能力、电流容量大、耐压能力好,适用于大功率逆变场合。IGBT的性能相对来说是介于两者之间,有较高的工作频率(20K以上),有较大的电流容量和较好的耐压能力。在本实验中,装置的功率在10kW以下,频率在20K以下可以满足要求,故而综合考虑选用全控、压控型器件IGBT作为开关管。而折射两光波之间的相位差与外施电压成正比。重庆功率分析仪电压传感器联系方式
按照输出信号分可以分为模拟量输出电压传感器和数字量输出电压传感器。重庆功率分析仪电压传感器联系方式
在实际的系统中,考虑到变压器有原边漏感的存在,实际选用的谐振电感值比计算的谐振电感值要小,工程调试中可以以计算得到的谐振电感值为基准,将谐振电感设计为可调电感,根据电路的实际情况调动谐振电感值来配合谐振电容完成零开通。本电路的仿真分为两个阶段,第一阶段仿真不纳入全桥变换器变压器的副边,末端的负载用一个等效至原边的电阻代替。此阶段仿真主要是为了实现超前桥臂和滞后桥臂的所有开关管的软开关,并且通过仿真的手段观察开关管实现软开关与电路中哪些参数关系**紧密,以及探讨实现软开关的临界条件。通过观测各个开关管承受电压、流通电流和驱动信号之间的关系,加强对移相全桥电路的理解,为后续的参数设置和电路调试提供理论基础。重庆功率分析仪电压传感器联系方式