由于阅读距离的增加,应用中有可能在阅读区域中同时出现多个射频标签的情况,从而提出了多标签同时读取的需求,进而这种需求发展成为一种潮流。目前,先进的射频识别系统均将多卷标识读问题作为系统的一个重要特征。以目前技术水平来说,无源微波射频卷标比较成功产品相对集中在902~928MHz工作频段上。2.45GHz和5.8GHz射频识别系统多以半无源微波射频卷标产品面世。半无源标签一般采用钮扣电池供电,具有较远的阅读距离。微波射频标签的典型特点主要集中在是否无源、无线读写距离、是否支持多标签读写、是否适合高速识别应用,读写器的发射功率容限,射频卷标及读写器的价格等方面。RFID天线的天线Q值是指天线的品质因数,影响天线的带宽和效率。UA-9418 8dBi 长方形天线现货
根据工作频段的不同,无源RFID系统通常分为低频(LF)、高频(HF)和超高频(UHF)系统。微波RFID天线形式多样,可以采用对称振子天线、微带天线、阵列天线和宽频带天线等。1RFID天线的应用及设计现状:(1)在RFID系统中,天线分为电子标签天线和读写器天线,(2)这2类天线按方向性可分为全向天线和定向天线等;(3)按外形可分为线状天线和面状天线等;(4)按结构和形式可分为环形天线、偶极天线、双偶极天线、阵列天线、八木天线、微带天线和螺旋天线等。(5)在低频频段和高频频段,RFID天线通过电感耦合完成能量和数据的传输;(6)在433MHz、800/900MHz、2.45GHz和5.8GHz的微波频段,RFID天线通过辐射完成能量和数据的传输。UA-9418 8dBi 长方形天线现货RFID天线的天线噪声系数是指天线引入的噪声对信号质量的影响,通常以dB为单位。
电阻负载调制的特性如下:当电子标签谐振回路两端的电压发生变化时,由于线圈电感耦合,这种变化会传递给读写器,表现为读写器线圈两端电压的振幅发生变化,因此产生对读写器电压的调幅。电阻负载调制的波形变化过程。(a)为电子标签数据的二进制数据编码,(b)为电子标签线圈两端的电压,(c)为读写器线圈两端的电压,(d)为读写器线圈解调后的电压。可以看出,(a)与(d)的二进制数据编码一致,表明电阻负载调制完成了信息传递的工作。
RFID电子标签天线的设计,电子标签天线的设计目标是传输较大的能量进出标签芯片,这需要仔细地设计天线和自由空间的匹配,以及天线与标签芯片的匹配。当工作频率增加到微波波段,天线与电子标签芯片之间的匹配问题变得更加严峻。一直以来,电子标签天线的开发是基于50Ω或者75Ω输入阷抗;而在RFID应用中,芯片的输入阷抗可能是任意值,开且很难在工作状态下准确测试,缺少准确的参数,天线的设计难以达到很好的效果。电子标签天线的设计还面临许多其他难题,如小尺寸要求、低成本要求、所标识物体的形状及物理特性要求、电子标签到贴标签物体的距离要求、贴标签物体的介电常数要求、釐属表面的反射要求、局部结构对辐射模式的影响要求等。这些都将影响电子标签天线的特性,都是电子标签设计面临的问题。RFID天线的工作频率有很多种,不同频率的天线适用于不同的应用场景。
RFID的工作频率,射频卷标的工作频率不仅决定着射频识别系统工作原理(电感耦合还是电磁耦合)、识别距离,还决定着射频标签及读写器实现的难易程度和设备的成本。工作在不同频段或频点上的射频标签具有不同的特点。射频识别应用占据的频段或频点在国际上有公认的划分,即位于ISM波段之中。典型的工作频率有:125kHz,133kHz,13.56MHz,27.12MHz,433MHz,902~928MHz,2.45GHz,5.8GHz等。低频段射频标签,低频段射频卷标简称为低频卷标,其工作频率范围为30kHz~300kHz。典型工作频率有:125KHz,133KHz。RFID天线的安装位置和角度对读取效果有影响,需要根据实际情况进行调整。UA-9418 8dBi 长方形天线现货
RFID天线可以实现定位功能,通过多个天线的信号强度差异来确定标签位置。UA-9418 8dBi 长方形天线现货
在电阻负载调制中,负载并联一个电阻,称为负载调制电阻,该电阻按数据流的时钟接通和断开,开关S的通断由二进制数据编码控制。电容负载调制,在电阻负载调制中,负载并联一个电容,取代了由二进制数据编码控制的负载调制电阻。RFID系统的基本工作方式分为全双工(FullDuplex)和半双工(HalfDuplex)系统以及时序(SEQ)系统。全双工表示射频标签与读写器之间可在同一时刻互相传送信息。半双工表示射频标签与读写器之间可以双向传送信息,但在同一时刻只能向一个方向传送信息。UA-9418 8dBi 长方形天线现货