不久前有工程师成功在RK3588上部署了DeepSeek,但也是跑起来了DeepSeekR1(Qwen21.5B)模型。1.5B什么概念,也就能处理处理轻量级的文字任务,而且也不能做到快速实时响应。除了算力问题,模型的移植也是难点,很多网络层,瑞芯微的平台并不支持。但这至少表明,在RK3588上运行...
慧视VIZ-YWT201微型双光吊舱集成集成可见光摄像机、红外热像仪等传感器,能够实现昼夜成像,内置成都慧视自研全国产化RV1126图像跟踪板,搭载自研AI跟踪算法,重量只有280g。能够对地面车辆、人员等目标进行昼夜观察、识别、捕获和跟踪,上报目标的图像及坐标信息。慧视VIZ-YWT202微型双可见光吊舱集成宽窄视场2路可见光摄像机,重量小于260g,采用金属外壳,抗冲击力强,具有功耗低、陀螺稳定、小体积、轻重量的优点。慧视VIZ-GT05V微型三轴双可见光惯性稳定吊舱搭载一颗千万级可见光CMOS传感器和一颗星光级可见光CMOS传感器,具备大小两个视场角,能够实时输出1080P的高清可见光视频,可实现夜间微弱光线下的目标观测。可应用于微小型无人飞行器、无人车、无人艇和其他无人观测设备,进行警务执法、电力巡检、安保巡视、救援搜索、消防救火等任务。利用成都慧视推出的SpeedDP能够帮助训练AI跟踪算法。贵州深度学习AI智能算法分析
高空坠物已经成为城市安全的一大威胁,一方面来自于人,而另一方面则来自于建筑物。以前的楼房大都是马赛克墙面,然后在外面再涂一层亚士漆作为保护,随着楼房建成年份变久,楼房的外立面历经风吹雨晒,就会出现、起壳、空鼓、渗水等迹象。传统的检查模式,需要“蜘蛛人”进行排查,这种方法费时费力,准确度也难以控制。无人机和吊舱的出现则有效解决了这一难点。无人机搭载吊舱,对大楼进行细致的扫描,就能够将建筑外墙的情况尽收眼底,就像给大楼拍CT一样。这种吊舱需要具备红外热成像的功能,通过太阳照射墙面的温度,捕捉肉眼不可见的隐患,如果外墙存在缺陷,则会呈现“热斑”和“冷斑”两种形态。搭载吊舱的无人机一二十分钟就能检查完一面墙,效率是人工远远无法企及的。贵州AI智能监控利用成都慧视推出的SpeedDP能够帮助训练AI识别算法。

而像标注、适配性移植部署等工作会耗费图像算法工程师大量时间和精力。对于时间成本的把控不到位,就变相增加了项目整体成本。基于以上强烈的市场需求,成都慧视光电技术有限公司经过两年的研发改进,推出了SpeedDP深度学习算法开发平台,该平台一经推出就得到了广大图像算法工程师的高度认可,尤其是一些图像标注项目多、任务重的科研院所,更是对SpeedDP高度推崇。SpeedDP作为一款专门针对AI零基础用户的低门槛AI开发平台,能够给用户提供从数据标注、模型训练、测试验证到RockChip嵌入式硬件平台模型部署的可视化AI开发功能。平台提供丰富的算法参数设置接口,满足不同用户业务场景的定制化需求。此外,慧视光电SpeedDP深度学习算法开发平台支持本地化服务器部署,满足一些客户需要对敏感数据或特定数据进行训练防止数据泄露的要求。
机器人是AI落地应用的一个很重要载体,AI赋能的机器人能够在安防巡检、自动化作业、应急救援等领域发挥重要作用。在电力巡检当中,传统的模式需要人工一步一步走出来,面对假设在各种环境中的输电线,这种模式弊端重重,费时费力。而常年经受风吹雨晒的输电线,在使用久了之后,难免会出现电力设备损坏缺失等问题,AI赋能下的机器人的出现,为这项行业的工作效率的提升提供了新思路。巡检机器人内置可见光和红外摄像头,能够实现昼夜巡检,然后再内置高性能的AI图像处理板,就能够运用AI识别、多机协同、数字孪生、巡检监控等技术,实现自动巡视、缺陷和表计自动识别和告警、巡视报表自动生成和发送等功能,实现场站式巡检场景的全息感知和全域决策辅助。成都慧视推出的SpeedDP很贵吗?

中国的无人机在世界上可谓是独领,随着技术的发展,无人机的应用范围也越来越广。在无人机的一些应用领域中,如应急救援、安防等,需要利用无人机进行远程信息侦查、航拍以及图像识别处理等功能,这就需要一款轻巧、成本低、像素好、品质高的吊舱。市面上很多吊舱要么就是体积大,要么就是重量大,或者是不支持角度、角速度的反馈控制,很难达到上述应用场景的工作需求。为了解决这些难点,成都慧视针对性的开发了多款微型多光吊舱来适配不同行业不同领域的需求。训练算法的平替工具有哪些?湖北专业AI智能处理板
SpeedDP支持YOLOv8分割算法标注。贵州深度学习AI智能算法分析
随着AI的快速发展,对应的软硬件也得到了快速的普及,苹果公司已经推出了新一代的具有AI功能的系列产品,Intel也推出了具有AI能力的新一代芯片。无论是无人机用吊舱产品还是边海防用转台产品,如果前端没有具有AI能力的图像处理板卡或智能跟踪设备,没有高性能的AI算法,很难在激烈的竞争中获得优势。特别是针对一些特定场景或特定目标的检测跟踪性能提升,图像算法工程师的压力与日俱增。按照传统的做法,需要经过数据采集、人工标注、模型训练、模型部署、效果评估等流程。贵州深度学习AI智能算法分析
不久前有工程师成功在RK3588上部署了DeepSeek,但也是跑起来了DeepSeekR1(Qwen21.5B)模型。1.5B什么概念,也就能处理处理轻量级的文字任务,而且也不能做到快速实时响应。除了算力问题,模型的移植也是难点,很多网络层,瑞芯微的平台并不支持。但这至少表明,在RK3588上运行...
山东多系统适配目标识别
2025-12-13
湖北慧视光电AI智能应用
2025-12-12
云南行业用AI智能图像处理
2025-12-12
吉林安防监控图像识别模块解决方案
2025-12-11
陕西RV1126开发板图像识别模块电子元器件
2025-12-11
重庆智慧城市AI智能服务平台
2025-12-10
视频图像识别模块技术
2025-12-10
黑龙江高效图像标注技术
2025-12-09
智能图像识别模块应用
2025-12-09