采用银烧结将芯片和柔性PCB板分别连接到两个DBC上,将CMC金属块烧结到每个芯片的表面,随后将两个DBC板焊接在一起并进行真空灌封硅凝胶密封。两侧DBC外表面为器件散热提供了双散热通路。高温环境下SiCMOSFET电流容量降低,并联芯片通常由于并联分支间的寄生不匹配导致电流不平衡,进而导致芯片温度分布不均,且并联芯片间热耦合严重,影响器件散热。研究者提出一种交错平面封装的新型半桥封装结构,该结构基于平面封装原理,具备双面散热能力。交错平面封装使任意两个相邻的并联芯片在空间上交错排列,可以避免芯片间的热耦合,实现更好的热性能。上下基板分别起到导电、导热、绝缘和机械支撑的作用。IGBT自动化设备的动态测试能够辅助故障诊断和故障排除。四川工业模块自动组装线价位
IGBR是具有防潮功能的大功率背接触式电阻器,可实现超高额定功率,具有适用于混合组件的微型外壳尺寸。IGBR电阻器具有高额定功率、单一引线接合组装的特性,外壳尺寸从0202到0808不等。典型应用于功率转换器(第三代SiCMOSFET)的栅极电阻器、大功率应用和替代能源等领域。IGBR是节省电源模块空间的完美部件。为什么IGBT模块中需要栅极电阻器?1.通过限制电流影响开关速度;2.限制栅极驱动路径中的噪声;3.限制寄生电感和电容;4.限制对栅极进行充电和放电的电流;5.限制峰值栅极电流以保护驱动器输出级;6.耗散栅极回路中的功率;7.影响开关损耗并防止栅极振荡。高精度无功老化测试设备制造IGBT自动化设备通过真空回流焊接确保了贴片的可靠连接和高质量的焊接效果。
探索IGBT模块中不同金属化方法覆铜氮化铝陶瓷基板的可靠性研究方法:使用厚度1mm的AlN陶瓷基板,无氧高导电铜箔(OFHC,0.05mm),五水硫酸铜(CuSO4·5H2O),盐酸(HCl),硫酸(H2SO4),Cu-P阳极板(P含量0.05%),AgCuTi活性金属焊膏(Ti含量4.5%),烧结Cu浆。将AlN陶瓷和铜箔切割为尺寸10mm×10mm的正方形块状,并使用1000目砂纸打磨表面,然后在蒸馏水浴中超声清洗20min备用。DPC金属化:采用磁控溅射先在AlN陶瓷表面制备厚约1μm的Ti打底层,再制备一层厚约3μm的Cu种子层增厚至约50μm,完成金属化。
TO247单管并联,市场上也有少量使用TO247单管封装的电控系统方案。使用单管并联方案的优势主要有两点:①单管方案可以实现灵活的线路设计,需要多大的电流就用相应的单管并联就好了,所以成本也有一定优势;②寄生电感问题比IGBT模块好解决。但是使用单管并联也存在一些待解决的难点:①每个并联单管之间均流和平衡比较困难,一致性比较难得到保障,例如实现同时的开断,相同的电流、温度等;②客户的系统设计、工艺难度非常大;③接口比较多,对产线的要求很高。自动化设备的应用使IGBT模块的封装工艺更加智能化和高效化。
微通道散热器采用低温共烧陶瓷(LTCC)制成,由于press-pack封装没有内部绝缘,热沉的引入增大了回路的寄生电感,上下两侧的微通道散热器设计可提供足够的散热能力,同时外形上厚度较薄可降低功率回路的电感。微通道散热器的电气回路和冷却回路分离,可以使用非介电流体进行冷却。虽然LTCC的导热性不如金属和AlN陶瓷好,但仿真结果表明,在总热耗散为60W,采用LTCC微通道热沉水冷散热时,SiC芯片至大结温只为85℃,并联芯片间的至大结温差小于0.9℃,并联芯片的结温分布比较均匀。结到热沉热阻为0.2℃/W,热沉至高温度为73℃,热沉到冷却剂的热阻为0.8℃/W。自动化设备保证了IGBT模块的高可靠性和高功率密度要求。黑龙江动态测试IGBT自动化设备
IGBT自动化设备负责封装和端子成形,保证产品的完整性和可靠性。四川工业模块自动组装线价位
采用纳米银烧结将Mo柱、SiC芯片和Cu柱连接到基板上。相比合金焊料,烧结银导热性能优异,有助于降低芯片连接层的热阻。可在两侧基板表面分别连接热沉进行双面散热。该双面散热封装模块的结壳热阻只有0.17℃/W,封装耗散功率密度超过200W/cm2,而同电压等级的CreeXHV-9模块的结壳热阻为0.468℃/W,表明该双面散热封装具有明显的热性能优势。为进一步优化双面散热封装器件的热性能,提出了柔性印刷电路板互连的平面封装结构,采用Cu-Mo-Cu(CMC)复合金属块满足绝缘要求。柔性PCB板既可以作为芯片上较小特征的互连,还可以代替传统的母线,缩短功率模块的电气回路长度减小寄生电感。四川工业模块自动组装线价位