至于双讲恢复能力WebRTCAEC算法提供了{kAecNlpConservative,kAecNlpModerate,kAecNlpAggressive}3个模式,由低到高依次不同的抑制程度,远近端信号处理流程,NLMS自适应算法(上图中橙色部分)的运用旨在尽可能地消除信号d(n)中的线性部分回声,而残留的非线性回声信号会在非线性滤波(上图中紫色部分)部分中被消除,这两个模块是WebrtcAEC的模块。模块前后依赖,现实场景中远端信号x(n)由扬声器播放出来在被麦克风采集的过程中,同时包含了回声y(n)与近端信号x(n)的线性叠加和非线性叠加:需要消除线性回声的目的是为了增大近端信号X(ω)与滤波结果E(ω)之间的差异,计算相干性时差异就越大(近端信号接近1,而远端信号部分越接近0),更容易通过门限直接区分近端帧与远端帧。非线性滤波部分中只需要根据检测的帧类型,调节抑制系数,滤波消除回声即可。下面我们结合实例分析这套架构中的线性部分与非线性分。线性滤波线性回声y'(n)可以理解为是远端参考信号x(n)经过房间冲击响应之后的结果,线性滤波的本质也就是在估计一组滤波器使得y'(n)尽可能的等于x(n),通过统计滤波器组的比较大幅值位置index找到与之对齐远端信号帧,该帧数据会参与相干性计算等后续模块。
声学回声消除,其主要用于抑制产品本身发出的声音。天津机器人唤醒声学回声
TWS耳机异音,底噪,回声测试难点,TWS耳机市场一直在迅猛发展和壮大,逐步提升在整个耳机市场中的份额,无论是坐公交,乘地铁,漫步,还是居家娱乐,都能看到TWS耳机的魅影。换个角度讲,TWS耳机正在融入人们的生活。与此同时,习惯了TWS的用户对于TWS耳机也有着更高的要求,比如音质,降噪,更好的无线连接,防水,续航,轻便,舒适等。近期市场调查反馈得知,消费者普遍把音质作为选购TWS耳机的首要指标。其中消费者直观感受到的几项指标,在生产环节又容易忽略及不易测试出来的。测试员在听音时因工厂环境原因也难以分辨出来,但在实际使用过程中又很容易发现的不良,造成客户投诉及批量退货。这就是异(常)音,底噪和回声问题。下面我们基于这三者的表象,原因以及测量方法做些介绍。一、耳机异(常)音异(常)音泛指耳机喇叭漏气、杂音、振音等非正常音。其产生原因大概有以下几项:1、喇叭音圈问题,如变形、散线、未对齐、尾部卷起大振幅时音圈碰擦到T铁或华司等。2、喇叭磁隙问题,有摩擦或松散微粒。3、喇叭振膜问题,脱胶,喇叭振膜边缘与钢架胶粘处分离,或振膜表面破损。4、耳机电气及悬挂系统的缺陷,导致干扰附加音。异常音之所以难测试。
天津机器人唤醒声学回声通过这种分析去挖掘非线性声学回声的一些物理特性。
非线性声学回声消除技术,非线性的声学回声消除问题,在实际声学系统里面非常普遍也非常棘手,到目前为止还没有特别有效的办法来解决。目前介绍非线性声学回声消除的公开文献也少之又少。如何处理非线性声学回声消除的,效果又如何?将从非线性声学回声消除产生的原因、研究现状、技术难点出发,详细介绍双耦合的声学回声消除算法以及实验检验结果。我要讲的内容是《非线性声学回声消除技术》,之所以选择这样的方向,主要是基于两个方面的原因:非线性的声学回声消除问题是一个困扰了行业很多年的技术难题,这个问题在实际的声学系统里非常普遍,同时又很棘手,到目前为止,还没有特别有效的办法。我猜测大家应该会对这个课题感兴趣。还有另外一个原因,我之前做过一些技术的调研,在现有公开的文献资料里,介绍非线性声学回声消除方面的资料非常少,我想借这样一个机会,介绍一些我们团队在这个领域的进展,希望能够对大家后续的研究有一些帮助,同时也想跟各位**做一下技术交流。我介绍的内容包括四个部分,个部分什么是非线性声学回声,它产生的原理、研究现状以及技术难点等问题;第二个部分重点介绍双耦合声学回声消除算法。
AEC定义声学回声(AcousticEcho)电话的扬声器的声音(包括反射声),被麦克风拾取传送给远端,使得远端说话人又听到自己的声音,广义回声指的是设备喇叭和自身麦克风的耦合现象都称为回声。回声消除AEC(AcousticEchoCancellation)一般指的是声学回声消除,其主要用于抑制产品本身发出的声音,使得产品在播放音频时依然可以进行语音交互;随着秒新月异的科技发展,各项技术成果不断地应用在我们日益拓展的各领域需求当中,刷新着我们的生活和工作。地球村的崛起,不断以互联网、物联网等方式揭示着万物相连的关系。无论是飞机、高铁还是电话、网络,都成为托起地球新村时空纵横的重要载体。怎样拉近人与人之间的关系,如何建立起更行之有效的联络方式,提高远程协同工作、信息传达效率成为了一个重要命题。远程会议的出现在很大程度上为这种多极化办公互动提供了质量的平台保障,在借助互联网便捷的远程通信架构下,通讯数据安全,稳定可靠,很长一段时间广受用户青睐。然而美中不足的是,这样的(声音)系统仍逃不出的还是自然声学上的问题。有和业内朋友聊天中谈到,今后的扩声系统也许只保留两级传统装置了,那就是声电转换和电声转换的拾音和还原。
推出的双耦合的声学回声消除算法以及实验检验结果。
他的是线性回声传递函数。基于这样的数学假设,我们收到的信号y就可以表示成发射的信号x分别跟这样两个传递函数进行卷积之后的结果。接下来我们对这个模型进行了适当的简化,简化主要是基于数学分解,我们假设非线性的传递函数,可以分解成线性跟非线性这样两个系统函数的组合形式,就会得到中间的方程。接下来对中间的方程进行变量替换,就得到这个表达式,这个表达式它的物理意义很清晰,我们从可以看到,整个回声路径是可以表示成线性回声路径跟非线性回声路径二者之和的形式,这是它的物理意义。2.双耦合自适应滤波器,基于这样一个数学模型,接下来我们就构建了一种新的滤波器结构,称之为双耦合自适应滤波器。这个滤波器跟传统线性的自适应滤波器相比,主要有两个方面的不同,个不同是传统的线性滤波器只有一个学习单元,而我们的这个滤波器有两个学习单元,分别是这里的线性回声路径滤波器,我们用Wl来表示。还有非线性的回声路径滤波器,我们用Wn来表示。第二个不同就是,我们在这两个滤波器之间还加入了一个耦合因子,这个耦合因子目的就是为了协同二者更好的工作,让二者能够发挥出比较大的效能,甚至能够起到1+1>2的效果。
声学回声的作用有哪些?天津机器人唤醒声学回声
声学回声的原理是什么?天津机器人唤醒声学回声
n)中的回声是扬声器播放远端参考x(n),又被麦克风采集到的形成的,也就意味着在近端数据还未采集进来之前,远端数据缓冲区中已经躺着N帧x(n)了,这个天然的延时可以约等于音频信号从准备渲染到被麦克风采集到的时间,不同设备这个延时是不等的。苹果设备延时较小,基本在120ms左右,Android设备普遍在200ms左右,低端机型上会有300ms左右甚至以上。(2)远近端非因果为什么会导致回声?从(1)中可以认为,正常情况下当前帧近端信号为了找到与之对齐的远端信号,必须在远端缓冲区沿着写指针向前查找。如果此时设备采集丢数据,远端数据会迅速消耗,导致新来的近端帧在向前查找时,已经找不到与之对齐的远端参考帧了,会导致后续各模块工作异常。如图10(a)表示正常延时情况,(b)表示非因果。WebRTCAEC中的延时调整策略关键而且复杂,涉及到固定延时调整,大延时检测,以及线性滤波器延时估计。三者的关系如下:①固定延时调整只会发生在开始AEC算法开始处理之前,而且调整一次。如会议盒子等固定的硬件设备延时基本是固定的,可以通过直接减去固定的延时的方法缩小延时估计范围,使之快速来到滤波器覆盖的延时范围之内。下面结合代码来看看固定延时的调整过程。
天津机器人唤醒声学回声
深圳鱼亮科技有限公司是一家集研发、生产、咨询、规划、销售、服务于一体的服务型企业。公司成立于2017-11-03,多年来在智能家居,语音识别算法,机器人交互系统,降噪行业形成了成熟、可靠的研发、生产体系。主要经营智能家居,语音识别算法,机器人交互系统,降噪等产品服务,现在公司拥有一支经验丰富的研发设计团队,对于产品研发和生产要求极为严格,完全按照行业标准研发和生产。深圳鱼亮科技有限公司研发团队不断紧跟智能家居,语音识别算法,机器人交互系统,降噪行业发展趋势,研发与改进新的产品,从而保证公司在新技术研发方面不断提升,确保公司产品符合行业标准和要求。深圳鱼亮科技有限公司以市场为导向,以创新为动力。不断提升管理水平及智能家居,语音识别算法,机器人交互系统,降噪产品质量。本公司以良好的商品品质、诚信的经营理念期待您的到来!