语音识别基本参数
  • 品牌
  • Bothlent
  • 型号
  • TS-USB-6MIC / TS-GX-6MIC系列
  • 封装形式
  • 软件算法+硬件
  • 工作电源电压
  • 5
语音识别企业商机

    即在解码端通过搜索技术寻找优词串的方法。连续语音识别中的搜索,就是寻找一个词模型序列以描述输入语音信号,从而得到词解码序列。搜索所依据的是对公式中的声学模型打分和语言模型打分。在实际使用中,往往要依据经验给语言模型加上一个高权重,并设置一个长词惩罚分数。语音识别本质上是一种模式识别的过程,未知语音的模式与已知语音的参考模式逐一进行比较,佳匹配的参考模式被作为识别结果。当今语音识别技术的主流算法,主要有基于动态时间规整(DTW)算法、基于非参数模型的矢量量化(VQ)方法、基于参数模型的隐马尔可夫模型(HMM)的方法、以及近年来基于深度学习和支持向量机等语音识别方法。站在巨人的肩膀上:开源框架目前开源世界里提供了多种不同的语音识别工具包,为开发者构建应用提供了很大帮助。但这些工具各有优劣,需要根据具体情况选择使用。下表为目前相对流行的工具包间的对比,大多基于传统的HMM和N-Gram语言模型的开源工具包。对于普通用户而言,大多数人都会知道Siri或Cortana这样的产品。而对于研发工程师来说,更灵活、更具专注性的解决方案更符合需求,很多公司都会研发自己的语音识别工具。(1)CMUSphinix是卡内基梅隆大学的研究成果。损失函数通常是Levenshtein距离,对于特定的任务它的数值是不同的。内蒙古语音识别翻译

    选用业界口碑较好的讯飞离线语音识别库,该库采用巴科斯范式语言描述语音识别的语法,可以支持的离线命令词的合,满足语音拨号软件的工作需求。其中,编写的语法文档主要部分如下:!start;:[];:我想|我要|请|帮我;:[];:给!id(10001)|打给!id(10001)|打电话给!id(10001)|拨打!id(10001)|呼叫!id(10001);:打电话!id(10001)|打个电话!id(10001)|拨打电话!id(10001)|拨电话!id(10001)|拨个电话!id(10001)|的电话!id(10001);:丁伟|李平;本文件覆盖了电话呼叫过程中的基本语法,其中中的数据,需要根据用户数据库进行补充,其它、、中的内容,用户根据自己的生活习惯和工作需要进行完善。另外,语音拨号软件的应用数据库为电话薄数据库,电话薄中的用户姓名是构建语法文档的关键数据;音频采集模块采用增强型Linux声音架构ALSA库实现。语音拨号软件工作流程语音拨号软件的工作流程如图2所示,电话薄数据库、语音识别控制模块、讯飞离线识别引擎和ALSA库相互配合,共同完成语音识别的启动、识别和结束。具体流程如下:(1)构建BNF文档:控制模块搜索本地电话薄数据库,导出用户数据信息,按照巴科斯范式语法,生成基于本地数据库的语法文档;。重庆谷歌语音识别语音识别的精度和速度取决于实际应用环境。

    DFCNN使用大量的卷积直接对整句语音信号进行建模,主要借鉴了图像识别的网络配置,每个卷积层使用小卷积核,并在多个卷积层之后再加上池化层,通过累积非常多卷积池化层对,从而可以看到更多的历史信息。2018年,阿里提出LFR-DFSMN(LowerFrameRate-DeepFeedforwardSequentialMemoryNetworks)。该模型将低帧率算法和DFSMN算法进行融合,语音识别错误率相比上一代技术降低20%,解码速度提升3倍。FSMN通过在FNN的隐层添加一些可学习的记忆模块,从而可以有效的对语音的长时相关性进行建模。而DFSMN是通过跳转避免深层网络的梯度消失问题,可以训练出更深层的网络结构。2019年,百度提出了流式多级的截断注意力模型SMLTA,该模型是在LSTM和CTC的基础上引入了注意力机制来获取更大范围和更有层次的上下文信息。其中流式表示可以直接对语音进行一个小片段一个小片段的增量解码;多级表示堆叠多层注意力模型;截断则表示利用CTC模型的尖峰信息,把语音切割成一个一个小片段,注意力模型和解码可以在这些小片段上展开。在线语音识别率上,该模型比百度上一代DeepPeak2模型提升相对15%的性能。开源语音识别Kaldi是业界语音识别框架的基石。

   

    声音的感知qi官正常人耳能感知的频率范围为20Hz~20kHz,强度范围为0dB~120dB。人耳对不同频率的感知程度是不同的。音调是人耳对不同频率声音的一种主观感觉,单位为mel。mel频率与在1kHz以下的频率近似成线性正比关系,与1kHz以上的频率成对数正比关系。02语音识别过程人耳接收到声音后,经过神经传导到大脑分析,判断声音类型,并进一步分辨可能的发音内容。人的大脑从婴儿出生开始,就不断在学习外界的声音,经过长时间的潜移默化,终才听懂人类的语言。机器跟人一样,也需要学习语言的共性和发音的规律,才能进行语音识别。音素(phone)是构成语音的*小单位。英语中有48个音素(20个元音和28个辅音)。采用元音和辅音来分类,汉语普通话有32个音素,包括元音10个,辅音22个。但普通话的韵母很多是复韵母,不是简单的元音,因此拼音一般分为声母(initial)和韵母(final)。汉语中原来有21个声母和36个韵母,经过扩充(增加aoeywv)和调整后,包含27个声母和38个韵母(不带声调)。普通话的声母和韵母(不带声调)分类表音节(syllable)是听觉能感受到的自然的语音单位,由一个或多个音素按一定的规律组合而成。英语音节可单独由一个元音构成。也可由一个元音和一个或多个辅音构成。其识别精度和速度都达不到实际应用的要求。

    ASR)原理语音识别技术是让机器通过识别把语音信号转变为文本,进而通过理解转变为指令的技术。目的就是给机器赋予人的听觉特性,听懂人说什么,并作出相应的行为。语音识别系统通常由声学识别模型和语言理解模型两部分组成,分别对应语音到音节和音节到字的计算。一个连续语音识别系统大致包含了四个主要部分:特征提取、声学模型、语言模型和解码器等。(1)语音输入的预处理模块对输入的原始语音信号进行处理,滤除掉其中的不重要信息以及背景噪声,并进行语音信号的端点检测(也就是找出语音信号的始末)、语音分帧(可以近似理解为,一段语音就像是一段视频,由许多帧的有序画面构成,可以将语音信号切割为单个的“画面”进行分析)等处理。(2)特征提取在去除语音信号中对于语音识别无用的冗余信息后,保留能够反映语音本质特征的信息进行处理,并用一定的形式表示出来。也就是提取出反映语音信号特征的关键特征参数形成特征矢量序列,以便用于后续处理。(3)声学模型训练声学模型可以理解为是对声音的建模,能够把语音输入转换成声学表示的输出,准确的说,是给出语音属于某个声学符号的概率。根据训练语音库的特征参数训练出声学模型参数。远场语音识别技术以前端信号处理和后端语音识别为主,以让语音更清晰,后送入后端的语音识别引擎进行识别。内蒙古语音识别翻译

在语音对话场景采买一句话识别(短语音)接口或者实时语音识别(长语音流)接口,都属于流式语音识别。内蒙古语音识别翻译

    什么是语音识别?语音识别(AutomaticSpeechRecognition,ASR):通俗地讲语音识别就是将人类的声音信号转化为文字或者指令的过程。语音识别以语音为研究对象,它是语音信号处理的一个重要研究方向,是模式识别的一个分支。语音识别的研究涉及微机技术、人工智能、数字信号处理、模式识别、声学、语言学和认知科学等许多学科领域,是一个多学科综合性研究领域。语音识别基本原理语音识别系统基本原理:其中:预处理模块滤除原始语音信号中的次要信息及背景噪音等,包括抗混叠滤波、预加重、模/数转换、自动增益控制等处理过程,将语音信号数字化;特征提取模块对语音的声学参数进行分析后提取出语音特征参数,形成特征矢量序列。特征提取和选择是构建系统的关键,对识别效果极为重要。由于语音信号本质上属于非平稳信号,目前对语音信号的分析是建立在短时平稳性假设之上的。在对语音信号作短时平稳假设后,通过对语音信号进行加窗,实现短时语音片段上的特征提取。这些短时片段被称为帧,以帧为单位的特征序列构成语音识别系统的输入。由于梅尔倒谱系数及感知线性预测系数能够从人耳听觉特性的角度准确刻画语音信号,已经成为目前主流的语音特征。为补偿帧间假设。内蒙古语音识别翻译

深圳鱼亮科技有限公司是一家有着雄厚实力背景、信誉可靠、励精图治、展望未来、有梦想有目标,有组织有体系的公司,坚持于带领员工在未来的道路上大放光明,携手共画蓝图,在广东省等地区的通信产品行业中积累了大批忠诚的客户粉丝源,也收获了良好的用户口碑,为公司的发展奠定的良好的行业基础,也希望未来公司能成为*****,努力为行业领域的发展奉献出自己的一份力量,我们相信精益求精的工作态度和不断的完善创新理念以及自强不息,斗志昂扬的的企业精神将**深圳鱼亮科技供应和您一起携手步入辉煌,共创佳绩,一直以来,公司贯彻执行科学管理、创新发展、诚实守信的方针,员工精诚努力,协同奋取,以品质、服务来赢得市场,我们一直在路上!

与语音识别相关的文章
与语音识别相关的产品
与语音识别相关的新闻
与语音识别相关的问题
新闻资讯
产品推荐
信息来源于互联网 本站不为信息真实性负责