语音关键事件检测基本参数
  • 品牌
  • Bothlent
  • 型号
  • XFM-USBMEMS-6MIC
  • 封装形式
  • DIP
语音关键事件检测企业商机

    本实用新型涉及监控技术领域,尤其涉及一种溺水语音关键事件检测系统。背景技术:随着生活水平的提高,游泳运动这一全身性锻炼的体育运动越来越受到人们的欢迎。由于游泳运动在水中进行,在游泳过程中,存在一定的危险性。对于初学者,在游泳过程中,因游泳技术不足导致无法随意呼吸、换气、行动等导致呛水,容易造成溺水事件;对于有经验的游泳者,可能会出现抽筋、碰撞受伤、意识模糊等原因导致溺水事件发生。若无法及时发现溺水的游泳者,极易导致溺水时间过长造成伤亡。为了有效地解决溺水问题,通常在游泳场馆中安装有摄像头。后台工作人员根据摄像头获取到的实时画面,判断是否有人发生溺水。当发现有人溺水时,通知游泳池边的救生人员。然而,上述方案存在效率低下和准确度较低的问题,无法及时地发现溺水现象。技术实现要素:本实用新型解决的问题是无法及时地发现溺水现象。为解决上述问题,本实用新型提供一种溺水事件检测系统,包括:n个适于实时采集图像的摄像头;所述n个摄像头均匀设置在游泳池壁上,且在垂直方向上与游泳池水面之间的距离小于预设值;n为正整数;控制器,与所述n个摄像头通信连接,适于获取所述n个摄像头实时采集的图像;告警装置。语音关键事件检测和摄像头有联系吗?欢迎来电咨询!广西自主可控语音关键事件检测内容

    语音关键事件检测JLayer和LayerUI结合起来可以检测任意区域上发生的事件(包括嵌套的子组件),这些类共同提供了4个方法来检测事件。·publicvoidsetLayerEventMask(longlayerEventMask)调用这个JLayer方法时必须使用位掩码AWTEvent常量选择它检测到的事件类型,如:setLayerEventMask(|);可以检测到按键和焦点改变事件。·publicvoidinstallUI(JComponentc)这个LayerUI方法通常放在setLayerEventMask()方法之前,这个方法类的代码首先调用超类方法((c);),然后是引用JLayer的JComponent参数,使用setLayerEventMask():((JLayer)c).setLayerEventMask();返回的结果。·publicvoiduninstallUI(JComponentc)这个LayerUI方法放在没有参数的setLayerEventMask()方法后,这个方法内的代码首先调用超类方法((c);),然后是引用JLayer的JComponent参数,使用setLayerEventMask():((JLayer)c).setLayerEventMask(0);返回的结果。·publicvoideventDispatched(AWTEvente,Jlayerl)只要前面注册的事件发生了,就会调用这个LayerUI方法,在这个方法中插入的代码负责响应事件,并恰当地更新层,更新了不同的绘制属性(如颜色)后,通过传递给这个方法的JLayer参数调用repaint()方法重新绘制。江西电子类语音关键事件检测是什么在安全监控领域,语音关键事件检测可以用于检测和识别异常声音事件,如求救声等。

    本发明实施例提供的一种事件检测方法,包括如下步骤:s300:实时获取关于目标防护舱的图像,并将当前时刻所采集到的图像作为当前帧图像;其中,目标防护舱指代的是需要进行事件检测的防护舱,并不具有任何其他限定意义。目标防护舱所对应的目标图像采集设备,实时对目标防护舱的内部空间进行图像采集,并将得到的关于目标防护舱的图像实时传输给的目标防护舱所对应的电子设备。这样,电子设备便可以实时获取关于目标防护舱的图像。其中,可以理解的,关于目标防护舱的图像可以为目标防护舱内部空间的图像。也就是说,上述目标图像采集设备可以在每个时刻采集关于目标防护舱的图像,进而,电子设备可以在每个时刻获得在该时刻时,关于目标防护舱的图像,该图像显示了每个时刻目标防护舱的内容空间的情况。则在当前时刻,电子设备所获得的关于目标防护舱的图像即为在当前时刻,目标图像采集设备所采集的关于目标防护舱的图像,这样,电子设备可以将该图像作为当前帧图像。显然,电子设备可以基于当前帧时刻,确定当前时刻,关于目标防护舱的事件检测结果。s301:检测当前帧图像是否包含目标对象,如果是,执行步骤s303;其中。

    电子设备可以确定存在用户进入目标防护舱,则在当前时刻,目标防护舱内可能发生异常事件,这样,电子设备便可以继续执行步骤s303。需要说明的是,在本实现方式中,电子设备可以采用任一能够检测出当前帧图像和当前帧图像之前的连续预设数量帧图像中是否均包含目标对象的图像识别算法执行上述步骤s302a,对此,本发明实施例不做具体限定。其中,上述预设数量可以为任一正整数,例如,5,10等,这都是合理的。下面,对电子设备执行上述步骤s302a的具体过程进行说明:电子设备在获取到每帧关于目标防护舱的图像后,判断该图像中是否包含目标对象。进而,在获取该图像的下一帧图像后,判断该下一帧图像中是否包括与前一帧图像相同的目标对象。依次类推,直至电子设备判断连续预设数量帧图像后中均包含相同的目标对象后,电子设备继续获得下一帧图像,即采集完连续预设数量帧图像后的当前时刻对应的当前帧图像,并判断该当前帧图像中是否包括前连续预设数量帧图像所包含的目标对象。这样,当判断结果为是时,电子设备便可以继续执行后续步骤s303。另一种具体实现方式中,如图5所示。在语音识别系统中,语音关键事件检测可以用于提高识别准确性和降低误识别率。

    将w2与w4进行横向拼接得到终的语义表示w3,w3的维度可以为[n,2*d1]。在本申请的示例性实施例中,自注意力机制计算具体可以包括:将w2分别进行多次(如三次)线性变换得到w21、w22、w23,然后可以执行矩阵相乘运算得到w4=(w22*w23t)*w21,w3=w2||w4。s105、对所述新的语义表示w3进行span分类,确定每个span是否为一个事件的触发词或事件主体。在本申请的示例性实施例中,所述对所述新的语义表示w3进行span分类可以包括:使用两层全连接神经网络和softmax层对每个span进行分类;其中,在训练阶段,将分类结果与带有标记的span进行误差计算和反向传播。在本申请的示例性实施例中,得到步骤s104的span的表示w3后,可以使用两层全连接神经网络和softmax层对span进行分类。在本申请的示例性实施例中,如果如步骤s101中所述,预先对数据进行了预处理,即预先对数据进行了span分类和标记,则在训练阶段,可以将分类结果与预处理过程所得的带有标记的span进行误差计算和反向传播,并进行参数更新操作完成训练过程。在本申请的示例性实施例中,在预测阶段,根据分类的结果即可得到每个span的类型。softmax的输出是每个span所属对应类型(预处理过程获得的带类型标记的span)的概率。语音关键事件检测有什么用?江西电子类语音关键事件检测是什么

语音关键事件检测算法的性能评估通常包括准确率、召回率和F1分数等指标。广西自主可控语音关键事件检测内容

    比如人名、地名、组织机构名、时间等。4、事件检测与主体抽取:事件检测与主体抽取即为同时抽取事件的触发词和事件的主体。5、注意力机制:注意力机制的本质来自于人类视觉注意力机制。当人们发现一个场景经常在某部分出现自己想观察的东西时,人们会进行学习在将来再出现类似场景时把注意力放到该部分上。在计算某一序列表示时,注意力机制可以获得权重和序列位置的相关性。6、自注意力机制:自注意力机制是对注意力机制的改进,减少了对外部信息的依赖,更擅长捕捉数据或特征的内部相关性,无视词之间的距离直接计算依赖关系,能够学习一个句子的内部结构。7、span:span可认为是“一段区域,每个span具有一定的宽度”,就是对一段话进行固定长度的选取,比如一句话“我吃了面包,喝了牛奶”,如果span的宽度为2,则可以得到片段“我今”、“”、“天吃”等。8、span的划分:span的划分是指根据设定的span的大宽度,从小到大依次进行划分。比如span大宽度为8,则span的宽度为1-8,分别进行划分,可以得到多个span。9、span的分类:span的分类是指通过模型或特定的方法判断一条数据所属的类型即标签,一般而言,分类任务中的每条数据只属于一个类别。广西自主可控语音关键事件检测内容

与语音关键事件检测相关的文章
与语音关键事件检测相关的产品
与语音关键事件检测相关的新闻
与语音关键事件检测相关的问题
新闻资讯
产品推荐
信息来源于互联网 本站不为信息真实性负责