准备自定义语音服务识别的数据数据多样性:用来测试和训练自定义模型的文本和音频需要包含你的模型需要识别的来自各种说话人和场景的示例。收集进行自定义模型测试和训练所需的数据时,请考虑以下因素:你的文本和语音音频数据需要涵盖用户在与你的模型互动时所用的各种语言陈述。例如,一个能升高和降低温度的模型需要针对人们在请求进行这种更改时会用的陈述进行训练。你的数据需要包含模型需要识别的所有语音变型。许多因素可能会改变语音,包括口音、方言、语言混合、年龄、性别、语音音调、紧张程度和当日时间。你包括的示例必须来自使用模型时所在的各种环境(室内、户外、公路噪音)。必须使用生产系统将要使用的硬件设备来收集音频。如果你的模型需要识别在不同质量的录音设备上录制的语音,则你提供的用来训练模型的音频数据也必须能够这些不同的场景。以后可以向模型中添加更多数据,但要注意使数据集保持多样性并且能够你的项目需求。将不在你的自定义模型识别需求范围内的数据包括在内可能会损害整体识别质量,因此请不要包括你的模型不需要转录的数据。基于部分场景训练的模型只能在这些场景中很好地执行。
语音服务的主要功能之一是能够识别并转录人类语音(通常称为语音转文本)。青海移动语音服务
请确保将其保持在适当的文件大小内。另外,每个训练文件不能超过60秒,否则将出错。若要解决字词删除或替换等问题。需要提供大量的数据来改善识别能力。通常,我们建议为大约1到20小时的音频提供逐字对照的听录。不过,即使是短至30分钟的音频,也可以帮助改善识别结果。应在单个纯文本文件中包含所有WAV文件的听录。听录文件的每一行应包含一个音频文件的名称,后接相应的听录。文件名和听录应以制表符(\t)分隔。听录应编码为UTF-8字节顺序标记(BOM)。听录内容应经过文本规范化,以便可由系统处理。但是,将数据上传到SpeechStudio之前,必须完成一些重要的规范化操作。有关在准备听录内容时可用的适当语言,请参阅如何创建人为标记的听录内容收集音频文件和相应的听录内容后,请先将其打包成单个.zip文件,然后再上传到SpeechStudio。下面是一个示例数据集,其中包含三个音频文件和一个人为标记的听录文件。有关语音服务订阅的建议区域列表,请参阅设置Azure帐户。在这些区域之一中设置语音服务订阅将减少训练模型所需的时间。在这些区域中,训练每日可以处理大约10小时的音频,而在其他区域中,每日只能处理1小时。如果无法在一周内完成模型训练。
山西新一代语音服务有什么GStreamer 会先解压缩音频,然后再将音频作为原始 PCM 通过网络发送到语音服务。
DFCNN先对时域的语音信号进行傅里叶变换得到语音的语谱,DFCNN直接将一句语音转化成一张像作为输入,输出单元则直接与终的识别结果(例如,音节或者汉字)相对应。DFCNN的结构中把时间和频率作为图像的两个维度,通过较多的卷积层和池化(pooling)层的组合,实现对整句语音的建模。DFCNN的原理是把语谱图看作带有特定模式的图像,而有经验的语音学**能够从中看出里面说的内容。DFCNN结构。DFCNN模型就是循环神经网络RNN,其中更多是LSTM网络。音频信号具有明显的协同发音现象,因此必须考虑长时相关性。由于循环神经网络RNN具有更强的长时建模能力,使得RNN也逐渐替代DNN和CNN成为语音识别主流的建模方案。例如,常见的基于seq2seq的编码-解码框架就是一种基于RNN的模型。长期的研究和实践证明:基于深度学习的声学模型要比传统的基于浅层模型的声学模型更适合语音处理任务。语音识别的应用环境常常比较复杂,选择能够应对各种情况的模型建模声学模型是工业界及学术界常用的建模方式。但单一模型都有局限性。HMM能够处理可变长度的表述,CNN能够处理可变声道。RNN/CNN能够处理可变语境信息。声学模型建模中,混合模型由于能够结合各个模型的优势。
房间101、102等)内的能被控制的设备(例如,电灯,窗帘等)所对应的受控设备信息(例如,设备物理地址等)。在本实施例的一个示例中,可以在语音服务端存储了至少一个设备列表,从而可以本地确定针对该目标设备用户信息目标设备列表。在本实施例的另一示例中,语音服务端还可以从其他设备(例如,物联网运营端)来获取受控设备信息。步骤130、基于目标设备区域配置信息从目标设备列表中确定目标受控设备信息。例如,可以基于“房间101”来确定该房间中设备信息。步骤140、基于语音消息对目标受控设备信息所对应的目标物联网受控设备进行操控。具体地,可以确定语音消息所对应的语音控制意图信息(例如,关闭电灯),并根据语音控制意图信息来对目标受控设备信息所对应的目标物联网受控设备进行操控。在一些应用场景中,语音控制意图信息可以是对应语音消息的“关闭电灯”,而不需要用户说出“关闭xx房间的电灯”,就能够直接对(例如,xx房间)的电灯进行操作,提高了用户体验。在本实施例的一个示例中,可以是语音服务端对目标物联网受控设备直接进行控制。在本实施例的另一示例中,语音服务端还可以发送控制指令至中控设备(例如,运营服务端)。提高窄带(EVS-NB)和宽带(EVS-WB)语音服务的质量和编码效率。
只要触发相应的语音词语、句子,系统就可以自动弹出交互菜单列表,供用户选择,快速又便捷;通过设置的程序选择模块,结合指令转换模块使用,如果客户不想用可以通过选择菜单直接退出,回到*初的ivr交互,或者通过菜单选择直接进入人工服务;采用该系统,如果是繁忙时间接入人工服务,需要等待,这时系统,会弹出推荐的音乐选择或者小游戏供用户选择,用户选择后只要后续人工接通,会自动为用户切换到人工服务,操作简单,使用效果好;通过视频语音结合的方式,使得语音服务系统在使用时更加的智能,提高了使用时的灵活性与实用性。附图说明图1为本发明一种智能语音服务交互系统的系统框图。具体实施方式为使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体实施方式,进一步阐述本发明。如图1所示,一种智能语音服务交互系统,包括处理器、服务器和后台终端,处理器上电连接有输入/输出模块、指令转换模块、识别模块、电源模块、和信息传递模块,输入/输出模块与处理器中间双向电连接,且处理器的输入端与指令转换模块的输出端电连接,输入/输出模块的输出端电连接有程序选择模块,且程序选择模块的输出端与指令转换模块的输入端电连接。人工语音服务是什么?山西新一代语音服务有什么
VR定制语音服务已经开始推行了,那么这项技术中关键的技术是什么呢?青海移动语音服务
游戏语音(GameVoice)是支持多样玩法、***覆盖游戏应用场景的语音服务。支持实时语音、语音消息、语音转文字,是自动建立组队语音房间,PVP玩法的必备。并针对游戏场景优化,低延迟、低耗能、低码率、流量小,兼容数百款安卓机型,保障比较好游戏语音体验。覆盖游戏中常用的语音功能:实时语音、语音消息、语音识别,超小SDK,游戏嵌入SDK,打包后*增加1.5M。玩家可快速录制并发送一段语音消息。针对游戏场景优化,过滤掉不必要的噪音,使流量小、延迟低、耗能低。延迟低、流量小、***的回声消除效果;码率可调整,满足不同需求场景;低耗能,Android单核700MHz主频CPU峰值小于3%。青海移动语音服务