传统语音识别系统的发音词典、声学模型和语言模型三大组件被融合为一个E2E模型,直接实现输入语音到输出文本的转换,得到终的识别结果。E2E模型06语音识别开源工具HTK(HMMToolkit)是一个专门用于建立和处理HMM的实验工具包,由剑桥大学的SteveYoung等人开发,非常适合GMM-HMM系统的搭建。Kaldi是一个开源的语音识别工具箱,它是基于C++编写的,可以在Windows和UNIX平台上编译,主要由DanielPovey博士在维护。Kaldi适合DNN-HMM系统(包括Chain模型)的搭建,支持TDNN/TDNN-F等模型。其基于有限状态转换器(FST)进行训练和解码,可用于x-vector等声纹识别系统的搭建。Espnet是一个端到端语音处理工具集,其侧重于端到端语音识别和语音合成。Espnet是使用Python开发的,它将Chainer和Pytorch作为主要的深度学习引擎,并遵循Kaldi风格的数据处理方式,为语音识别和其他语音处理实验提供完整的设置,支持CTC/Attention等模型。07语音识别常用数据库TIMIT——经典的英文语音识别库,其中包含,来自美国8个主要口音地区的630人的语音,每人10句,并包括词和音素级的标注。一条语音的波形图、语谱图和标注。这个库主要用来测试音素识别任务。近年来,该领域受益于深度学习和大数据技术的进步。福建语音识别在线
共振峰的位置、带宽和幅度决定元音音色,改变声道形状可改变共振峰,改变音色。语音可分为浊音和清音,其中浊音是由声带振动并激励声道而得到的语音,清音是由气流高速冲过某处收缩的声道所产生的语音。语音的产生过程可进一步抽象成如图1-2所示的激励模型,包含激励源和声道部分。在激励源部分,冲击序列发生器以基音周期产生周期性信号,经过声带振动,相当于经过声门波模型,肺部气流大小相当于振幅;随机噪声发生器产生非周期信号。声道模型模拟口腔、鼻腔等声道qi官,后产生语音信号。我们要发浊音时,声带振动形成准周期的冲击序列。发清音时,声带松弛,相当于发出一个随机噪声。图1-2产生语音的激励模型,人耳是声音的感知qi官,分为外耳、中耳和内耳三部分。外耳的作用包括声源的定位和声音的放大。外耳包含耳翼和外耳道,耳翼的作用是保护耳孔,并具有定向作用。外耳道同其他管道一样也有共振频率,大约是3400Hz。鼓膜位于外耳道内端,声音的振动通过鼓膜传到内耳。中耳由三块听小骨组成,作用包括放大声压和保护内耳。中耳通过咽鼓管与鼻腔相通,其作用是调节中耳压力。内耳的耳蜗实现声振动到神经冲动的转换,并传递到大脑。福建语音识别在线这是一种允许计算机在具有特定限制的两个给定序列(例如时间序列)之间找到比较好匹配的方法。
我们来看一个简单的例子,假设词典包含:jin1tian1语音识别过程则"jin天"的词HMM由"j"、"in1"、"t"和"ian1"四个音素HMM串接而成,形成一个完整的模型以进行解码识别。这个解码过程可以找出每个音素的边界信息,即每个音素(包括状态)对应哪些观察值(特征向量),均可以匹配出来。音素状态与观察值之间的匹配关系用概率值衡量,可以用高斯分布或DNN来描述。从句子到状态序列的分解过程语音识别任务有简单的孤立词识别,也有复杂的连续语音识别,工业应用普遍要求大词汇量连续语音识别(LVCSR)。主流的语音识别系统框架。对输入的语音提取声学特征后,得到一序列的观察值向量,再将它们送到解码器识别,后得到识别结果。解码器一般是基于声学模型、语言模型和发音词典等知识源来识别的,这些知识源可以在识别过程中动态加载,也可以预先编译成统一的静态网络,在识别前一次性加载。发音词典要事先设计好,而声学模型需要由大批量的语音数据(涉及各地口音、不同年龄、性别、语速等方面)训练而成,语言模型则由各种文本语料训练而成。为保证识别效果,每个部分都需要精细的调优,因此对系统研发人员的专业背景有较高的要求。
行业的发展速度反过来会受限于平台服务商的供给能力。跳出具体案例来看,行业下一步发展的本质逻辑是:在具体每个点的投入产出是否达到一个普遍接受的界限。离这个界限越近,行业就越会接近滚雪球式发展的临界点,否则整体增速就会相对平缓。不管是家居、酒店、金融、教育或者其他场景,如果解决问题都是非常高投入并且长周期的事情,那对此承担成本的一方就会犹豫,这相当于试错成本过高。如果投入后,没有可感知的新体验或者销量促进,那对此承担成本的一方也会犹豫,显然这会影响值不值得上的判断。而这两个事情,归根结底都必须由平台方解决,产品方或者解决方案方对此无能为力,这是由智能语音交互的基础技术特征所决定。从技术来看,整个语音交互链条有五项单点技术:唤醒、麦克风阵列、语音识别、自然语言处理、语音合成,其它技术点比如声纹识别、哭声检测等数十项技术通用性略弱,但分别出现在不同的场景下,并会在特定场景下成为关键。看起来关联的技术已经相对庞杂,但切换到商业视角我们就会发现,找到这些技术距离打造一款体验上佳的产品仍然有绝大距离。所有语音交互产品都是端到端打通的产品,如果每家厂商都从这些基础技术来打造产品。
通过方向盘上的手指控制,启动语音识别系统,并通过音频提示向驾驶员发出信号。
直接调用即可开启语音识别功能。RunASR函数代码如下:用户说完话后,LD3320通过打分的方式,将关键词列表中特征**相似的一个作为输出。然后LD3320会产生一个中断信号,此时MCU跳入中断函数读取C5寄存器的值,该值即为识别结果,得到结果后,用户可以根据数值来实现一些功能,比如读取到1,说明是“播放音乐”,那么可以调用前面的PlaySound函数来播放音乐。语音识别控制的关键点在于语音识别的准确率。表1给出了测试结果,当然也可以在识别列表中加入更多的关键词来做测试。通过测试结果可以看出,LD3320的识别率在95%上,能够满足用户需求。4结语本文讨论了基于AVR单片机的语音识别系统设计的可行性,并给出了设计方案。通过多次测试结果表明,本系统具有电路运行稳定,语音识别率高,成本低等优点。同时借助于LD3320的MP3播放功能,该系统具有一定的交互性和娱乐性。移植性方面,系统通过简单的修改,可以很方便地将LD3320驱动程序移植到各种嵌入式系统中。随着人们对人工智能功能的需求,语音识别技术将越来越受到人们的关注,相信不久的将来,语音识别将会拥有更广阔的应用。语音识别目前已使用在生活的各个方面:手机端的语音识别技术。福建语音识别在线
需要对发生在数千个离散时间步骤前的事件进行记忆,这对语音识别很重要。福建语音识别在线
语音识别在噪声中比在安静的环境下要难得多。目前主流的技术思路是,通过算法提升降低误差。首先,在收集的原始语音中,提取抗噪性较高的语音特征。然后,在模型训练的时候,结合噪声处理算法训练语音模型,使模型在噪声环境里的鲁棒性较高。在语音解码的过程中进行多重选择,从而提高语音识别在噪声环境中的准确率。完全消除噪声的干扰,目前而言,还停留在理论层面。(3)模型的有效性识别系统中的语言模型、词法模型在大词汇量、连续语音识别中还不能完全正确的发挥作用,需要有效地结合语言学、心理学及生理学等其他学科的知识。并且,语音识别系统从实验室演示系统向商品的转化过程中还有许多具体细节技术问题需要解决。智能语音识别系统研发方向许多用户已经能享受到语音识别技术带来的方便,比如智能手机的语音操作等。但是,这与实现真正的人机交流还有相当遥远的距离。目前,计算机对用户语音的识别程度不高,人机交互上还存在一定的问题,智能语音识别系统技术还有很长的一段路要走,必须取得突破性的进展,才能做到更好的商业应用,这也是未来语音识别技术的发展方向。在语音识别的商业化落地中,需要内容、算法等各个方面的协同支撑。福建语音识别在线