要实现这一点,语音技术必须与基于文本的技术无缝融合,以提供良好的客户体验。这使公司能够轻松地在数字和语音会话之间切换,并根据会话需要来回切换。会话人工智能的进展改变了游戏。在过去两年中,语音识别和会话人工智能的进步使下一代语音接口能够产生更自然和个性化的对话,并通过准确的意图发现实现更高水平的自助服务。有效实施会话人工智能意味着语音机器人可以为语音通话提供服务,而无需升级到座席,就像会话人工智能通过智能聊天机器人应用于商务信息,如苹果商务聊天(AppleBusinessChat)和谷歌商务信息(GoogleBusinessMessaging)一样。让我们更仔细地了解一下语音技术的一些进展,这些进展将使语音技术成为客户与公司互动的可靠方式:高级语音识别--在亚马逊、谷歌和微软的重大投资推动下,语音识别在过去几年取得了显着进步。通过的自然语言理解和深度神经网络语音识别,语音技术可以用来理解客户,而不考虑语法、口音或背景噪音。文本到语音--通过先进的文本到语音技术,公司可以创建和部署多语言和方言的类人、高质量提示,而不是每次想要做出改变时都必须雇用语音人才。这缩短了语音提示部署和更改的上市时间。
如果语音服务订阅所在区域没有于训练的硬件,我们建议你完全删除音频并留下文本。信息化语音服务介绍
异步对话听录通过异步听录,将对话音频进行流式传输,但是不需要实时返回的听录。相反,发送音频后,使用Conversation的conversationId来查询异步听录的状态。异步听录准备就绪后,将获得RemoteConversationTranscriptionResult。通过实时增强异步,你可以实时地获取听录,也可以通过使用conversationId(类似于异步场景)查询来获得听录。完成异步听录需要执行两个步骤。第一步是上传音频:选择异步或实时增强异步。第二步是获取听录结果。上传音频异步听录的第一步是使用语音服务SDK(版本)将音频发送到对话听录服务。以下示例代码演示如何为异步模式创建ConversationTranscriber。若要将音频流式传输到转录器,可以添加通过语音SDK实时转录对话中派生的音频流代码。具有conversationId之后,在客户端应用程序中创建远程对话听录客户端RemoteConversationTranscriptionClient,以查询异步听录的状态。创建RemoteConversationTranscriptionOperation的对象,以获取长时间运行的操作对象。你可以检查操作的状态,也可以等待操作完成。 吉林信息化语音服务供应语音合成标记语言可让开发人员指定如何使用文本转语音服务将输入文本转换为合成语音。
提及智能家居,我们常想到也常用到的可能就是通过手机APP连接wifi这样的操作步骤来对家居设备进行联网控制了。然而,随着智能语音识别技术等人工智能技术的发展和融入,智能家居的一些场景应用也逐渐得到升级改进。在某些应用场景下,家居智能化的简单操控实际上并不用通过联网控制这样复杂的方式就可以实现智能家居的**简单化了。如比较常见的就是通过发送口令唤醒家居设备,让家居环境达到比较符合用户需要的状态,同时也让用户的生活更便捷、更简单、更智能。正是基于这样的需求,由用户本地操控便可以更好地实现人机交互的离线智能语音技术便随之诞生。这种不需联网的离线语音技术不仅给智能家居各种设备的使用带来诸多方便,同时也给用户打造了一个极为简单的家居体验,可以说让用户体验增色了不少。然而,也有业内**认为,对于离线语音识别技术而言,虽然看似不用联网操作那么复杂,但这也并不意味着离线语音识别技术是一种非常简单非常容易开发的技术。毕竟在真正的使用过程中,用户的口音及环境噪音等问题,都可能会影响用户的使用体验。这也就对开发离线语音识别模块的厂商提出了巨大了考验。
本发明属于物联网技术领域,尤其涉及一种物联网设备语音控制方法及语音服务端。背景技术:随着语音处理技术和互联网技术的不断发展,使用语音来对设备(尤其是物联网设备)进行控制,从而提升用户体验已经成为了目前科技发展的一大趋势。目前,针对物联网设备的控制操作,一般是通过分析用户语音消息处理操作来对用户账号下的所有iot(internetofthings,物联网)智能设备进行控制,无法对同一用户的不同物联网设备分别进行个性化控制。但是,在一些应用场景下(例如酒店智能家居场景)下,可能需要对酒店用户下的多个房间的物联网设备分别**地进行控制。针对上述问题,目前业界暂无较佳的解决方案。技术实现要素:本发明实施例提供一种物联网设备语音控制方法及语音服务端,用于至少解决上述技术问题之一。一方面,本发明实施例提供一种物联网设备语音控制方法,应用于语音服务端,该方法包括:获取基于物联网主控设备所确定的语音控制请求,所述语音控制请求包括语音消息、目标设备用户信息和目标设备区域配置信息;确定所述目标设备用户信息所对应的目标设备列表,所述目标设备列表包括针对所述目标设备用户信息的在多个设备区域配置信息下的多个受控设备信息。移动语音服务,不得不说的那些事。
该程序被处理器执行时实现上述方法的步骤。本发明实施例的有益效果在于:语音服务端从物联网主控设备获取语音控制请求,通过语音控制请求中的目标设备用户信息来调用相应的设备列表,通过语音控制请求中的目标设备区域配置信息从该设备列表中确定对应区域的受控设备信息,进而对该受控设备信息所指示的物联网受控设备进行操控,因此能够对用户下不同区域的受控设备分别进行语音控制,拓展了语音控制方案的应用场景。另外,还不需要用户语音消息中包括区域信息,提高了用户的语音操控体验。说明为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用作一简单地介绍,显而易见地,下面描述是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,根据本发明实施例的应用于语音服务端的物联网设备语音控制方法的一示例的流程;根据本发明实施例的物联网设备语音控制方法的一示例的信号流程;根据本发明实施例的物联网设备语音控制方法的一示例的信号流程;根据本发明实施例的用于确定设备列表的过程的一示例的流程。要将语音服务资源(层或付费层)添加到 Azure 帐户。贵州语音服务标准
格式正确的数据可确保自定义语音服务识别对其进行准确处理。信息化语音服务介绍
例如:“aaaa”、“yeahyeahyeahyeah”或“that'sitthat'sitthat'sitthat'sit”。语音服务可能会删除包含太多重复项的行。请勿使用特殊字符或编码在U+00A1以后的UTF-8字符。将会拒绝URI。用于训练的发音数据如果用户会遇到或使用没有标准发音的不常见字词,你可以提供自定义发音文件来改善识别能力。重要建议不要使用自定义发音文件来改变常用字的发音。应以单个文本文件的形式提供发音。口述形式是拼写的拼音顺序。它可以由字母、单词、音节或三者的组合构成。自定义发音适用于英语(en-US)和德语(de-DE)。用于测试的音频数据:音频数据适合用于测试Microsoft基线语音转文本模型或自定义模型的准确度。请记住,音频数据用于检查语音服务的准确度,反映特定模型的性能。若要量化模型的准确度,请使用音频和人为标记的听录数据。默认音频流格式为WAV(16KHz或8kHz,16位,单声道PCM)。除了WAV/PCM外,还可使用GStreamer支持下列压缩输入格式。MP3、OPUS/OGG、FLAC、wav容器中的ALAW、wav容器中的MULAW、任何(适用于媒体格式未知的情况)。提示上传训练和测试数据时,.zip文件大小不能超过2GB。如果需要更多数据来进行训练,请将其划分为多个.zip文件并分别上传。 信息化语音服务介绍