发光二极管基于半导体的电致发光效应,当 PN 结正向导通时,电子与空穴在结区复合,释放能量并以光子形式发出。半导体材料的带隙宽度决定发光波长:例如砷化镓(带隙较窄)发红光,氮化镓(带隙较宽)发蓝光。通过荧光粉转换技术(如蓝光激发黄色荧光粉)可实现白光发射,光效可达 150 流明 / 瓦(远超白炽灯的 15 流明 / 瓦)。量子阱结构通过限制载流子运动范围,将复合效率提升至 80% 以上,倒装焊技术则降低热阻,延长寿命至 5 万小时。Micro-LED 技术将芯片尺寸缩小至 10 微米级,像素密度可达 5000PPI,推动超高清显示技术发展。交通信号灯采用发光二极管,凭借其高亮度、长寿命,保障交通安全有序。龙岗区MOSFET场效应管二极管材料

1947 年是颠覆性转折点:贝尔实验室的肖克利团队研制出锗点接触型半导体二极管,采用金触丝压接在锗片上形成结面积 0.01mm² 的 PN 结,无需加热即可实现电流放大(β 值达 20),体积较真空管缩小千倍,功耗降低至毫瓦级。1950 年,首只硅二极管诞生,其 175℃耐温性(锗 100℃)和 0.1μA 漏电流(锗为 10μA)彻底改写规则,为后续晶体管与集成电路奠定材料基础。从玻璃真空管到半导体晶体,这一阶段的突破不 是元件形态的革新,更是电子工业从 “热电子时代” 迈向 “固态电子时代” 的底层改变。北仑区本地二极管直销价雪崩光电二极管通过雪崩倍增效应,大幅提高对微弱光信号的检测能力。

20 世纪 60 年代,硅材料凭借区熔提纯技术(纯度达 99.99999%)和平面工艺(光刻分辨率 10μm)确立统治地位。硅整流二极管(如 1N4007)反向击穿电压突破 1000V,在工业电焊机中实现 100A 级大电流整流,效率较硒堆整流器提升 40%;硅稳压二极管(如 1N4733)利用齐纳击穿特性,将电压波动控制在 ±1% 以内,成为早期计算机(如 IBM System/360)电源的重要元件。但硅的 1.12eV 带隙限制了其在高频(>100MHz)和高压(>1200V)场景的应用 —— 当工作频率超过 10MHz 时,硅二极管的结电容导致能量损耗激增,而高压场景下需增大结面积,使元件体积呈指数级膨胀。
二极管基础的用途是整流 —— 将交流电转换为直流电。硅整流二极管(如 1N4007)通过面接触型 PN 结实现大电流导通,其 1000V 耐压和 1A 电流承载能力,多样用于家电电源适配器。在开关电源中,快恢复二极管(FRD)以 50ns 反向恢复时间,在 400kHz 频率下实现高效整流,较传统工频整流效率提升 30%。工业场景中,高压硅堆(如 6kV/50A)由数十个二极管串联而成,用于变频器和电焊机,可承受 20 倍额定电流的浪涌冲击,保障工业设备稳定供电。整流二极管的存在,让电网的交流电得以转化为电子设备所需的直流电,成为电力转换的基础元件。碳化硅二极管耐高压高温,适配新能源汽车与光伏。

1970 年代,硅整流二极管(如 1N5408)替代机械式触点,用于汽车发电机整流 —— 其 100V 反向耐压和 30A 平均电流,使发电效率从 60% 提升至 85%,同时将故障间隔里程从 5000 公里延长至 5 万公里。1990 年代,快恢复二极管(FRD)凭借 50ns 反向恢复时间,适配车载逆变器的 20kHz 开关频率,在 ABS 防抱死系统中实现微秒级电流控制,制动距离缩短 15%。2010 年后,车规级肖特基二极管(AEC-Q101 认证)成为电动车重要:在 OBC 充电机中,其 0.4V 正向压降使充电速度提升 30%,而反向漏电流<10μA 保障电池组安全。 2023 年,碳化硅二极管开启 800V 高压平台时代:耐温 175℃的 SiC 二极管集成于电驱系统,支持 1200V 母线电压,使电动车超快充(10 分钟补能 80%)成为现实稳压二极管能在反向击穿时维持稳定电压,保护电路免受电压波动影响。北京工业二极管产业
快恢复二极管拥有极短的反向恢复时间,在高频电路里快速切换,让电流传输高效又稳定。龙岗区MOSFET场效应管二极管材料
隧道二极管(江崎二极管)基于量子隧穿效应,在重掺杂 PN 结中实现负阻特性。当 PN 结掺杂浓度极高时,势垒宽度缩小至 10 纳米以下,电子可直接穿越势垒形成隧道电流。正向电压增加时,隧道电流先增大后减小,形成负阻区(电压升高而电流降低)。例如 2N4917 隧道二极管在 0.1V 电压下可通过 100 毫安电流,负阻区电阻达 - 50 欧姆,常用于 100GHz 微波振荡器,振荡频率稳定度可达百万分之一 /℃。其工作机制突破传统 PN 结的热电子发射原理,为高频振荡和高速开关提供了新途径。龙岗区MOSFET场效应管二极管材料