膜片钳基本参数
  • 品牌
  • Patch Clamp
  • 型号
  • 型号齐全
膜片钳企业商机

电压钳的原理∶用两根前列直径0.5um的电极插入细胞内,一根电极用作记录电极以记录跨膜电位,用另一根电极作为电流注入电极,以固定膜电位。从而实现固定膜电位的同时记录膜电流。电位记录电极引导的膜电位(Vm)输入电压钳放大器的负输入端,而人为控制的指令电位(Vc)输入正输入端,放大器的正负输入端子等电位,向正输入端子施加指令电位(Vc)时,经过短路负端子可使膜片等电较,即Vm=Vc,从而达到电位钳制的目的,并可维持一定的时间。Vc的不同变化将导致Vm的变化,从而引起细胞膜上电压依赖性离子通道的开放,通道开放引起的离子流反过来又引起Vm的变化,致使Vm≠Vc,Vc与Vm的任何差值都会导致放大器有电压输出,将相反极性的电流注入细胞,以使Vc=Vm,注入电流的大小与跨膜离子流相等,但方向相反。因而注入的电流被认为是标本兴奋时的跨膜电流值(通道电流)。通过膜片钳放大器的控制键将微电极的连接电位(junction potentials)调至零位。美国单电极膜片钳电流钳制

美国单电极膜片钳电流钳制,膜片钳

光遗传学调控技术是近几年正在迅速发展的一项整合了光学、基因操作技术、电生理等多学科交叉的生物技术。NatureMethods杂志将此技术评为"Methodoftheyear2010"[19];美国麻省理工学院科技评述(MITTechnologyReview,2010)在其总结性文章"Theyearinbiomedicine"中指出:光遗传学调控技术现已经迅速成为生命科学,特别是神经和心脏研究领域中热门的研究方向之一。目前这一技术正在被全球几百家从事心脏学、神经科学和神经工程研究的实验室使用,帮助科学家们深入理解大脑的功能,进而为深刻认识神经、精神疾病、心血管疾病的发病机理并研发针对疾病干预和的新技术。德国脑片膜片钳脑片微电极的制备膜片钳电极是用外径为1-2mm的毛细玻璃管拉制成的。

美国单电极膜片钳电流钳制,膜片钳

高阻封接问题的解决不仅改善了电流记录性能,还随之出现了研究通道电流的多种膜片钳方式。根据不同的研究目的,可制成不同的膜片构型。细胞吸附膜片(cell-attachedpatch)将两次拉制后经加热抛光的微管电极置于清洁的细胞膜表面上,形成高阻封接,在细胞膜表面隔离出一小片膜,既而通过微管电极对膜片进行电压钳制,分辨测量膜电流,称为细胞贴附膜片。由于不破坏细胞的完整性,这种方式又称为细胞膜上的膜片记录。此时跨膜电位由玻管固定电位和细胞电位决定。因此,为测定膜片两侧的电位,需测定细胞膜电位并从该电位减去玻管电位。从膜片的通道活动看,这种形式的膜片是极稳定的,因细胞骨架及有关代谢过程是完整的,所受的干扰小。滔博生物TOP-Bright专注基于多种离子通道靶点的化合物体外筛选,服务于全球药企的膜片钳公司,快速获得实验结果,专业团队,7*65小时随时人工在线咨询.

电压钳技术,是20世纪初由Cole发明,Hodgkin和Huxley完善,其设计的主要目的是为了证明动作电位的产生机制,即动作电位的峰电位是由于膜对钠的通透性发生了一过性的增大过程。但当时没有直接测定膜通透性的方法,于是就用膜对某种离子的电导来**该种离子的通透性,膜电导测定的依据是电学中的欧姆定律,如膜的Na电导GNa与电化学驱动力(Em-ENa)和膜电流INa的关系GNa=INa/(Em-ENa).因此可通过测量膜电流,再利用欧姆定律来计算膜电导,但是,利用膜电流来计算膜电导时,记录膜电流期间的膜电位必须保持不变,否则膜电流的变化就不能**膜电导的变化。这一条件是利用电压钳技术实现的。下张幻灯中的右边两张图是Hodgkin和Huxley在半个世纪以前利用电压钳记录的抢乌贼的动作电位和动作电位过程中的膜电流的变化图,他们的实验***证明参与动作电位的离子流由Na,k,漏(Cl)三种成分组成。并对这些离子流进行了定量分析。这一技术对阐明动作电位的本质和离子通道的的研究做出了极大的贡献。膜片钳是一种用于夹持薄膜或其他薄片材料的工具。

美国单电极膜片钳电流钳制,膜片钳

膜片钳技术:从一小片膜(约几平方微米)上获取电子信息的技术,即保持跨膜电压恒压箝位的技术,从而测量通过膜的离子电流。通过研究离子通道中的离子流动,可以了解离子输运、信号传递等信息。基本原理:利用负反馈电子电路,将前排微电极吸附的细胞膜电位固定在一定水平,动态或静态观察通过通道的微小离子电流,从而研究其功能。一种研究离子通道的电生理技术是施加负压,使玻璃微电极前沿(开口直径约1μm)与细胞膜紧密接触,形成高阻抗密封,可以准确记录离子通道的微小电流。可制备成三种单通道记录模式:细胞贴附、内面向外、外面向内,以及另一种多通道全细胞记录模式。膜片钳技术实现了小膜的隔离和高阻密封的形成。由于高阻密封,背景噪声水平降低,记录频带范围相对变宽,分辨率提高。此外,它还具有良好的机械稳定性和化学绝缘性。小膜隔离使得研究单个离子通道成为可能。由此形成了一门细胞学科—电生理学,即是用电生理的方法来记录和分析细胞产生电的大小和规律的科学。德国多通道膜片钳实验操作

离子通道的近代观念源于Hodgkin、Huxley、Katz等人在20世纪30—50年代的开创性研究。美国单电极膜片钳电流钳制

全细胞记录构型(whole-cellrecording) 高阻封接形成后,继续以负压抽吸使电极管内细胞膜破裂,电极胞内液直接相通,而与浴槽液绝缘,这种形式称为“全细胞”记录。它既可记录膜电位又可记录膜电流。其中膜电位可在电流钳情况下记录,或将玻管连到标准高阻微电极放大器上记录。在电压钳条件下记录到的大细胞全细胞电流可达nA级,全细胞钳的串联电阻(玻管和细胞内部之间的电阻)应当补偿。任何流经膜的电流均流经这一电阻,所引起的电压降将使玻管电压不同于细胞内的真正电位。电流愈大,愈需对串联电阻进行补偿。全细胞钳应注意细胞必需合理的小到其电流能被放大器测到的范围(25~50nA)。减少串联电阻的方法是玻管尖要比单通道记录大。美国单电极膜片钳电流钳制

与膜片钳相关的**
信息来源于互联网 本站不为信息真实性负责