许多废水处理装置涉及非牛顿型流体中的多相流动和传质问题,研究其中的气液传质过程有助于实现装置的优化设计和高效节能运行。以鼓泡反应器内清水和不同质量分数的羧甲基纤维素钠(CMC)水溶液为实验对象,分别研究气相表观气速和液相流变特性对气泡尺寸分布、全局气含率和体积氧传质系数的影响。实验结果表明,液相的流变特性对其传质特性参数均有较大影响。与清水相比,CMC水溶液中气泡平均直径和分布范围更大;清水和CMC水溶液的全局气含率均随表观气速的增加而增大;CMC水溶液的体积氧传质系数随CMC水溶液质量分数的增加而减小。基于实验研究,得出修正的体积氧传质系数公式和适用于幂律型非牛顿流体流动体系氧传递过程的无量纲关联式,可比较好地实现非牛顿流体流动的废水处理装置中气液传质参数的计算。鼓泡塔具有的优势:结构简单。镇江鼓泡塔工艺
气液鼓泡塔反应器为方型鼓泡塔反应器,反应器的长度为0.15m,高度为0.45m,首先在商业软件GAMBIT中建立反应器的二维模型,随后对反应器的模拟区域进行网格划分,网格划分采用结构化的正四边形网格,分别采用0.5mm、1.0mm和2.0mm的网格精度并进行了网格单独性分析。计算流体力学软件FLUENT用于求解反应器数学方程,采用非稳态求解方法,时间步长设定为0.001s。在边界条件的设置中,入口边界条件设置为Velocityinlet,其中气相体积分数为100%,表示只有气体进入鼓泡塔而液体则填充在鼓泡塔中;出口边界条件设置为适用于充分发展流动的Outflow边界条件;反应器壁面设置为无滑移的壁面边界条件。在模型参数设置中,气体体积分数的离散采用Geo-reconstruct格式;为了确保计算的准确性,对中的每个算例,收敛准则均设定为1×10﹣6;为了较为快速地收敛,密度、压力和动量的亚松弛因子分别设置为0.3、1.0和0.7。镇江鼓泡塔工艺有槽型鼓泡反应器、鼓泡管式反应器、鼓泡塔等多种结构型式,其中鼓泡塔应用广;
简单鼓泡塔内液相可近似视为理想混合流型,气相可近似视为理想置换流型。较佳空塔气速应满足两个条件:(1)保证反应过程的较佳选择性;(2)保证反应器体积较小。影响传质的因素:当气体空塔气速低于0.05m/s时,气体分布器的结构就决定了气体的分散状况、气泡的大小,进而决定了气含率和液相传质系数的大小。当气体空塔气速大于0.1m/s时,气体分布器的结构无关紧要。此时的气泡是靠气流与液体间的冲击和摩擦而形成,气泡大小及其分布状况主要取决于气体空塔气速。
鼓泡塔多为空塔,一般在塔内设有挡板,以减少液体返混;为加强液体循环和传递反应热,可设外循环管和塔外换热器。装置特点:与填充塔、板式塔相比,鼓泡反应器的主要特点是液相体积分率高(可达90%以上),单位体积液相的相界面积小(在200m2/m3以下)。当反应极慢,过程由液相反应控制时,提高以单位反应器体积为基准的反应速率主要靠增加液相体积分率,宜于采用鼓泡反应器。当反应极快,过程由气液相际传质控制时,提高过程速率主要靠增加相界面积,则以采用填充塔或板式塔为宜。鼓泡塔反应器是一种较常见和较重要的多相流反应器,在多个领域有着普遍的应用。
鼓泡塔中的传质一般气膜传质阻力较小,可以忽略,液膜传质阻力的大小决定了传质速率的快慢。欲提高单位相界面的传质速率,即提高传质系数,则必须提高扩散系数。扩散系数不只与液体物理性质有关,而且还与反应温度、气体反应物的分压或液体浓度有关。当鼓泡塔在安静区操作时,影响液相传质系数的因素主要是气泡大小、空塔气速、液体性质和扩散系数等;而在湍动区操作时,液体的扩散系数、液体性质、气泡当量比表面积以及气体表面张力等,成为影响传质系数的主要因素,鼓泡塔中的传热传热方式:三种利用溶剂、反应物或产物气化带走热量。利用液体外循环冷却器移走热量。利用夹套、蛇管或列管式冷却器移走热量。鼓泡反应器是以液相为连续相,气相为分散相的气液反应器;镇江鼓泡塔工艺
鼓泡塔反应器是一种气-液或气-液-固多相接触与反应装置,在多个领域有普遍应用。镇江鼓泡塔工艺
鼓泡塔反应器的流体力学特性气泡的直径计算可按Akita准数关联式计算:12vsgDgDgDvs为全塔平均气泡直径;为液体表面张力可用下式描述气泡直径沿径向的变化:为鼓泡内反应器内于直径d处气泡平均直径d为鼓泡塔反应器内任一点的直径气含率:单位体积鼓泡床(充气层)内气体所占的体积分数静态气含率动态气含率液体不流动时的气含率液体连续流动时的气含率气含率的含义是气液混合液中气体所占的体积分率,可用下式表示:GL——气液混合物体积,m对于传质与化学反应来讲,气含率非常重要,因为气含率与停留时间及气液相界面积的大小有关影响气含率的因素主要有设备结构、物性参数和操作条件等。一般气体的性质对气含率影响不大,可以忽略。镇江鼓泡塔工艺