相控阵按阵列形式通常可分为线形、矩阵形、环形和扇形。相控阵探头有多种不同的阵列排布形式,其类型按阵元排列方式可分为:一维线阵、二维矩阵、环形阵、扇形阵、凹面阵、凸面阵、双线型阵等。不同的阵列排布方式将会产生不同的声场特性,使相控阵能应用于不同工况下的检测。一维线阵是目前相控阵探头中应用多的一种形式,其特点是能在相控阵的轴平面实现声束偏转和轴向聚焦。与一维线阵相比,环形阵的优势是能在声束剖面实现二维聚焦(一维线阵只能实现一个方向上的声束聚焦),声束剖面呈圆形,能获得较大的能量集中,并且不要求大数目的阵列。相控阵探头根据设计的性能可采用直接或通过多路复用器。定制相控阵探头批发
能影响相控阵探头检测性能的参数有哪些?动态范围是在增益不变时,超声波相控阵探伤仪示波屏上能分辨的较大反射面积与较小反射面积波高之比,通常以分贝(dB)表示。按照有关规定,仪器的动态范围不小于26dB。灵敏度是超声波相控阵探伤仪与探头组合后所具有的检测较小缺陷的能力。可检出的缺陷愈小或检出同样大小缺陷的可探测距离愈大,表示仪器和探头组合后的灵敏度愈高。盲区是在正常检测灵敏度下,从检测表面到较近可检缺陷的距离。仪器的发射脉冲愈宽,盲区愈大。因此盲区可近似地用显示器显示的发射脉冲所占宽度来表示。定制相控阵探头批发相控阵探头中比较常用的是线阵探头。
在工业检测领域,超声探头还常用于超声波探伤。这是一种非破坏性的检测技术,可以检测材料内部的缺陷,如裂纹、气孔、夹杂等。通过分析回波信号的特征,可以评估材料的完整性和可靠性,对于保障材料的质量和安全具有重要作用。此外,超声探头还可以用于目标定位和材料性质评估。例如,通过测量超声波的传播速度和衰减情况,可以推测材料的密度、弹性模量和声阻抗等物理性质。总的来说,超声探头在工业检测中的应用非常广,涵盖了材料检测、测距、成像、探伤等多个方面,对于提高产品质量、保障工业安全具有重要意义。
超声相控阵探头按阵列类别可分为线阵、面阵两种。线阵相控阵探头有单线阵和双线阵两种,线阵相控阵探头中的晶片按照直线方向一维排布,只能实现晶片排列方向上的波束偏转。双线阵相控阵探头可以得到更好的近场检测效果。面阵相控阵探头又有矩阵、环阵等类型。矩阵相控阵探头中的晶片按照两个方向排布,可实现两个方向上的波束偏转。环阵相控阵探头晶片呈同心圆环状排布,主要实现不同深度的聚焦功能。扇阵相控阵探头由环阵再切割而成,聚焦的同时可实现偏转。相控阵探头具有更高数据点密度的C扫描成像功能,从而可提高检测效率。
相控阵探头按阵列形式通常可分为线形、矩阵形、环形和扇形。相控阵探头有多种不同的阵列排布形式,其类型按阵元排列方式可分为:一维线阵、二维矩阵、环形阵、扇形阵、凹面阵、凸面阵、双线型阵等。不同的阵列排布方式将会产生不同的声场特性,使相控阵能应用于不同工况下的检测。相控阵探头电子束通过交替地发射线性相控阵给定数目的元件进行电子转换。这种技术替代了常规超声单晶片探头的机械移动扫查的一种方法。线阵相控阵探头的优点是无需机械运动。使用相控阵探头可以产生预定的声束角度或不同角度的声束。定制相控阵探头批发
相控阵探头电子束聚焦通过对线性相控阵不同阵元施加对称的聚焦法则。定制相控阵探头批发
相控阵阵列探头的阵元间距是标定相控阵阵列探头的关键参数之一,较大的阵元间距能够提高阵列的指向性,但阵元间距设置过大,扫描时就会在实空间出现不希望有的栅瓣,栅瓣的能量很大,是形成伪像的主要原因。阵元间距是影响主瓣宽度的重要因素之一,随着阵元间距的增加,主瓣宽度逐渐变窄,但是当阵元间距过大时,栅瓣就会出现。为了避免栅瓣的产生,同时为了提高阵列的横向分辨率,在确定阵元间距时,选择小于dmax的较大值。凸面阵能很好地匹配相同曲率管子的内径,但在阵列凸面排列的状态下,声场旁瓣十分明显,特别是小径管中的聚焦声场更容易向空间扩散;凸面阵多用于医学B超超声诊断领域。定制相控阵探头批发