相控阵探头是由多阵元组成的多晶片探头,相控阵检测技术利用晶片数量上的优势,可以变换组合、分时激励,实现灵活聚焦。相控阵探头晶片数量是决定相控阵聚焦功能的基础,选择合适的晶片数量有利于发挥相控阵技术优势。相控阵探头有很多种,线阵探头是工业应用领域简单常用的。对线阵探头的声场的了解很重要。并且,当扫描时探头表面必须被保护。如果探头面直接在粗糙面上摩擦,它将磨损。当用在金属部件上直接接触检测时,探头的表面应该用铁氟龙胶带保护。这种相控阵解决方案可以提供更大的声束覆盖范围、更快的扫查速度,以及具有更高数据点密度的C扫描成像功能,从而可提高检测效率。相控阵探头的聚焦锐利度会随着频率的升高而增强。深圳环形相控阵探头
柔性相控阵探头常用于扫描形状变化的复杂部件的高分辨率厚度成像,它像标准相控阵探头一样产生扇形和线性扫描,并通过相控阵设备实现B扫描、C扫描成像显示。当柔性相控阵探头用作复杂几何形状检测时,它不应被考虑作为一个耐用的工具。你必须小心的在探头上应用恒压来维持好的信号。并且,当扫描时探头表面必须被保护。如果探头面直接在粗糙面上摩擦,它将磨损。当用在金属部件上直接接触检测时,探头的表面应该用铁氟龙胶带保护。超声相控阵技术检测搭接焊缝降低了缺陷识别难度,对于长期因难于判断而难于推广的搭接焊检测来说,具有很强的实用价值。深圳环形相控阵探头扇阵相控阵探头由环阵再切割而成,聚焦的同时可实现偏转。
相控阵探头的应用发展:随着超声波相控阵相控阵检测技术的飞速发展,相控阵真实几何结构位置仿真工艺技术得到越来越普遍的关注,各种检测工艺的应用逐渐在验证成熟。同时,伴随着国内涉及该技术应用的相关法规标准的发布,该技术在特种设备、石化石油、电力等领域的应用被正式认可。超声相控阵技术已有近20多年的发展历史。初期主要应用于医疗领域,医学超声成像中用相控阵换能器快速移动声束对被检部位成像;大功率超声利用其可控聚焦特性局部升温热疗治病,使目标组织升温并减少非目标组织的功率吸收。较初,系统的复杂性、固体中波动传播的复杂性及成本费用高等原因使其在工业无损检测中的应用受限。然而随着电子技术和计算机技术的快速发展,超声相控阵技术逐渐应用于工业无损检测,特别是在核工业及航空工业等领域。
不同阵列排布方式的相控阵探头:相控阵按阵列形式通常可分为线形、矩阵形、环形和扇形。相控阵探头有多种不同的阵列排布形式,其类型按阵元排列方式可分为:一维线阵、二维矩阵、环形阵、扇形阵、凹面阵、凸面阵、双线型阵等。不同的阵列排布方式将会产生不同的声场特性,使相控阵能应用于不同工况下的检测。20世纪60年代,相控阵的研究主要局限于实验室;60年代末70年代初,医学物理学者将该技术用于医学人体超声成像中。2000年后,随着压电复合材料、纳秒级脉冲信号控制、数据处理分析、软件技术和计算机模拟等多种技术在超声相控阵成像领域中的综合应用,超声相控阵检测技术得以迅速发展,并逐步应用于工业无损检测领域。由相控阵探头产生的声波会沿直线传播,直到遇到材料介质的边缘。
凹面阵相控阵探头:凹面阵多用于管道的外检测,因其能很好地匹配相同曲率管子的外径,并且其阵列的排列方式有物理聚焦的特点,声束比平面阵列更加容易汇聚。凸面阵能很好地匹配相同曲率管子的内径,但在阵列凸面排列的状态下,声场旁瓣十分明显,特别是小径管中的聚焦声场更容易向空间扩散;凸面阵多用于医学B超超声诊断领域。在工业方面,国内已有部分学者对凸面阵探头进行了开发应用,但总体研究并不多。除了阵列排布方式、延时法则之外,超声相控阵探头的检测能力还与探头盲区大小、中心频率、发射脉冲宽度、楔块的选择、耦合介质、试件表面平整度等因素有关。因此,针对一些特殊的检测对象,调整其中的某些因素,便可以获得不同用途的超声相控阵探头。相控阵探头可以利用0°相控阵探头进行垂直扫查,实现比常规手动更直观的检测结果。深圳环形相控阵探头
相控阵探头根据设计的性能可采用直接或通过多路复用器。深圳环形相控阵探头
相控阵探头的应用:相控阵采用S扫,即同时可以拥有许多角度的超声波,就相当于拥有多种角度的探头同时工作,所以相控阵无需锯齿扫查,只要沿着焊缝挪动探头即可,检测效率更高。适用于自动化生产,和批量生产。相控阵可以拥有聚焦功能,而常规超声波一般没有(除了聚焦探头外),所以相控阵检测的灵敏度和分辨率都比常规超声检测高。相控阵检测可以同时拥有B扫、D扫、S扫和C扫描,可以通过建模,建立一个三维立体图形,缺陷显示非常直观,哪怕不懂NDT的人都能看明白,而常规超声波只能通过波形来分辨缺陷。深圳环形相控阵探头