不同车载传感器的比较,目前,激光雷达、毫米波雷达和摄像头是公认的自动驾驶的三大关键传感器技术。从技术上看,激光雷达与其他两者相比具备强大的空间三维分辨能力。中国汽车工程学会、国汽智联汽车研究院编写的《中国智能网联汽车产业发展报告(2019)》称,当前在人工智能的重要应用场景智能网联汽车的自动驾驶和辅助驾驶领域中,激光雷达是实现环境感知的主要传感器之一。报告认为,在用于道路信息检测的传感器中,激光雷达在探测距离、精确性等方面,相比毫米波雷达具有一定的优势。电力巡检时激光雷达识别线路故障,提高巡检精度。广东轨旁入侵激光雷达设备

激光雷达,也称光学雷达(LIght Detection And Ranging)是激光探测与测距系统的简称,它通过测定传感器发射器与目标物体之间的传播距离,分析目标物体表面的反射能量大小、反射波谱的幅度、频率和相位等信息,从而呈现出目标物精确的三维结构信息。自上世纪60年代激光被发明不久,激光雷达就大规模发展起来。而测距原理上目前主要以飞行时间(time of flight)法为主,利用发射器发射的脉冲信号和接收器接受到的反射脉冲信号的时间间隔来计算和目标物体的距离。深圳地面激光雷达供应激光雷达以其高分辨率成像能力,在无人机地形测绘中发挥着重要作用。

应用层面,目前暂无车规级量产案例,OPA方案的表示企业为Quanergy。2021年8月,Quanergy对其OPA固达态激光雷达S3系列完成驾驶实测演示。测试结果显示,S3系列固态激光雷达可以提供超过10万小时的平均无故障时间(MTBF),在全光照下实现100米的探测性能,大规模量产后的目标价格为500美元。由于结构简单,Flash闪光激光雷达是目前纯固态激光雷达较主流的技术方案。但是由于短时间内发射大面积的激光,因此在探测精度和探测距离上会受到较大的影响,主要用于较低速的无人驾驶车辆,例如无人外卖车、无人物流车等,对探测距离要求较低的自动驾驶解决方案中。
目前,LiDAR已普遍应用于各个领域。在大气科学中,LiDAR被用于空气质量监测和污染物检测;在天文学领域,LiDAR技术可用于观察行星表面地貌特征以及太阳系内其他天体的形态结构;在工程建设方面,利用LiDAR技术可以快速获取地形数据、制作数字高程模型(DEM)以及生成精确的三维地图;而在汽车领域中,人们普遍认为LiDAR是一项关键的光学距离感知技术,在自动驾驶领域得到了普遍应用。几乎所有投入自动驾驶研发的厂商都将LiDAR视为一项关键技术,并且已经有一些低成本、小体积的LiDAR系统被应用于高级驾驶辅助系统(Advanced Driver Assistance Systems, ADAS)。借 360°x59° 超广 FOV,Mid - 360 力保移动机器人作业现场安全。

相比于半固态式和固态式激光雷达,机械旋转式激光雷达的优势在于可以对周围环境进行360°的水平视场扫描,而半固态式和固态式激光雷达往往较高只能做到120°的水平视场扫描,且在视场范围内测距能力的均匀性差于机械旋转式激光雷达。由于无人驾驶汽车运行环境复杂,需要对周围360°的环境具有同等的感知能力,而机械旋转式激光雷达兼具360°水平视场角和测距能力远的优势,目前主流无人驾驶项目纷纷采用了机械旋转式激光雷达作为主要的感知传感器。激光雷达的实时性使其成为智能交通系统的重要组成部分。广西激光雷达市价
览沃 Mid - 360 从 2D 到 3D 感知升级,提升移动机器人运维效率。广东轨旁入侵激光雷达设备
LiDAR 数据通常在空中收集,如NOAA在加州大苏尔Bixby大桥上空的调查飞机(右图)。这里的LiDAR数据显示了Bixby大桥的俯视图(左上)和侧视图(左下)。NOAA的科学家使用基于LiDAR的装置检查自然和人造环境。LiDAR数据支持洪水和风暴潮建模、水动力建模、海岸线测绘、应急响应、水文测量以及海岸脆弱性分析等活动。此外,地形LiDAR使用近红外激光绘制地形和建筑物地图,而测深LiDAR使用透水绿光绘制海底和河床地图。在农业中,LiDAR可用于绘制拓扑图和作物生长图,从而提供有关肥料需求和灌溉需求的信息。广东轨旁入侵激光雷达设备