激光雷达的FOV,FOV指激光雷达能够探测到的视场范围,可以从垂直和水平两个维度以角度来衡量范围大小,下图比较形象的展示了激光雷达FOV范围,之所以要提到FOV是因为后面不同的技术路线基本都是为了能够实现对FOV区域内探测。垂直FOV:常见的车载激光雷达通常在25°,形状呈扇形;水平FOV:常见的机械式激光雷达可以达到360°范围,通常布置于车顶;常见的车载半固态激光雷达通常可以达到120°范围,形状呈扇形,可布置于车身或车顶。建筑行业内激光雷达快速扫描建模,辅助设计与施工。四川激光雷达供应商

我们可以根据 LiDAR 能描绘出稀疏的三维世界的特点,而扫描得到的障碍物点云通常又比背景更密集,通过分类聚类的方法可以利用其进行感知障碍物。而随着深度学习带来的检测和分割技术上的突破,LiDAR 已经能做到高效的检测行人和车辆,输出检测框,即 3D bounding box,或者对点云中的每一个点输出 label,更有甚者在尝试使用 LiDAR 检测地面上的车道线。在三维目标识别的对象方面,较初研究主要针对立方体、柱体、锥体以及二次曲面等简单形体构成的三维目标。上海三维激光雷达规格览沃 Mid - 360 凭借 360°x59° 超广 FOV,感知三维空间信息。

车联网+机器人,智慧城市、车联网等场景有助于催生路侧激光雷达市场成长。世界范围来看,中国车联网发展速度较快,战略化程度较高。2020 年 2 月,国家发展革新委、工信部、科技部等 11 个部委联合印发《智能汽车创新发展战略》,提出到 2025 年,车用无线通信网络(LTE-V2X 等)实现区域覆盖,新一代车用无线通信网络(5G-V2X)逐步开展应用,高精度时空基准服务网络实现全覆盖。激光雷达结合智能算法,能够提供高精度的位置、形状、姿态等信息,实现对交通状况进行全局性的精确把控,对车路协同功能的实现至关重要。随着智能城市、智能交通项目的落地,未来该市场对激光雷达的需求将呈现稳定增长态势。
当我们用当前帧和整个点云地图进行匹配的时候,我们便能得到传感器在整个地图中的位姿,从而实现在地图中的定位。传感器车规化,固态激光雷达取消了机械结构,能够击中目前机械旋转式的成本和可靠性的痛点,是激光雷达的发展方向。除了这两大迫切解决的痛点外,目前量产的激光雷达探测距离不足,只能满足低速场景(如厂区内、校园内等)的应用。日常驾驶、高速驾驶的场景仍在测试过程中。当前机械式激光雷达的价格十分昂贵,Velodyne 在售的 64/32/16 线产品的官方定价分别为 8 万/4 万/8 千美元。一方面,机械式激光雷达由发射光源、转镜、接收器、微控马达等精密零部件构成,制造难度大、物料成本较高;另一方面,激光雷达仍未大规模进入量产车、需求量小,研发费用等固定成本难以摊薄。 量产 100 万台 VLP-32后,那么其售价将会降至 400 美元左右。10cm 小盲区配合小巧身形,览沃 Mid - 360 为机器人提供无死角视野。

点频,即周期采集点数,因为激光雷达在旋转扫描,因此水平方向上扫描的点数和激光雷达的扫描频率有一定的关系,扫描越快则点数会相对较少,扫描慢则点数相对较多。一般这个参数也被称为水平分辨率,比如激光雷达的水平分辨率为 0.2°,那么扫描的点数为 360°/0.2°=1800,也就是说水平方向会扫描 1800 次。那么激光雷达旋转一周,即一个扫描周期内扫描的点数为 1800*64=115200。比如禾赛 64 线激光雷达,扫描频率为 10Hz 的时候水平角分辨率为 0.2°,在扫描频率为 20Hz 的时候角分辨率为 0.4°(扫描快了,分辨率变低了)。输出的点数和计算的也相符合 1152000 pts/s。激光雷达的分辨率高,能够捕捉到细微的目标特征。江苏连续波激光雷达渠道
览沃 Mid - 360 作为新物种,让移动机器人在多样场景精确感知。四川激光雷达供应商
发射端与预定目标之间的大气杂质会产生虚假回波——这些大气杂质产生的虚假回波可能会非常强烈,以至于无法可靠的检测到来自预定目标物的回波信号。可用光功率限制——更高功率的光束可以提供更高的精度,但也更加昂贵。扫描速度——激光光源的工作频率可能对人眼造成危害并引发安全问题,然而我们可以通过其他方法来缓解这个问题。例如,固态LiDAR能够在不威胁人眼安全的波长下运行,并且还能照亮更广阔的区域。来自附近其他LiDAR装置的信号串扰可能会干扰目标信号。四川激光雷达供应商