数据处理的商业化分工日益精细,外包、收购、合作等模式使得控制者与处理者的关系频繁变动,法定职责边界难以覆盖所有场景。企业并购中,收购方继承被收购方的PII处理活动后,往往需承担历史遗留的安全责任,这正是万豪酒店集团案件的he心矛盾。这种立场在欧盟GDPR第4条中得到法律支撑——控制者被定义为“决定个人数据处理目的与方式的自然人或法人”,而“方式”的界定涵盖了技术安全措施。由此也可以联想到,在技术外包场景中,例如某银行将he心系统运维外包给IT服务商,若服务商员工违规访问用户账户,银行是否因“未履行监督义务”而担责?此外,数据处理外包中,控制者常通过合同约定转移责任,但西班牙高级法院明确判决,控制者自身违规导致的罚款,无法通过indemnity条款向处理者追偿,这种“责任不可转移”原则与商业实践中的风险分担需求形成尖锐冲tu。SCC 的跨境数据保护条款可与 ISO27701 的隐私控制措施对应,形成互补性合规框架。北京信息安全标准

2025年,AI、量子计算等各类新兴技术的崛起,站在这个时点回望,PII(个人可识别信息)控制者与处理者的责任边界早已不是静态的法律条文,而是法律、技术、治理三维空间中的动态平衡体。生成式AI的“模型记忆”问题正在催生新的责任主体——某算法安全公司推出的“差分隐私训练框架”,可减少模型对训练数据中PII的记忆,这种技术创新正在重新定义处理者的技术义务边界。量子计算的阴影下,NIST标准化的后量子密码学算法成为全球企业的“数字护城河”。而零信任架构与持续自适应风险与信任评估(CARTA)模型的融合,则构建起实时演进的安全防线。某云服务商的实践显示,这种动态防护体系可将PII泄露风险降低至传统方案的1/5。控制者与处理者必须认识到:在数据成为新石油的时代,PII保护不是零和博弈,而是需要共同浇筑的责任共同体。从法律条款的精细设计,到技术防护的持续迭代,再到治理机制的革新升级,这场关于责任边界的zhan争,终将指向一个目标——在数字浪潮中,为每个人的隐私权筑起不可逾越的防火墙。天津个人信息安全评估PIMS隐私信息管理体系建设需明确数据主体权利,建立便捷的信息查询与删除通道。

企业安全风险评估应采用定性与定量结合法,提高风险结果的科学性与可操作性。定性评估与定量评估各有优势,单一方法难以quan面、精细地反映风险实际情况,结合使用才能实现优势互补。定性评估通过zhuan家判断、经验分析等方式,对风险性质、影响范围进行描述性评价,如判断某漏洞属于“数据泄露风险”或“系统瘫痪风险”,操作简便且适用于初期风险筛查。定量评估则通过数据建模、统计分析等手段,将风险转化为可量化的指标,如风险发生概率、可能造成的经济损失金额等,为资源投入决策提供精细数据支持。例如,评估客户shu据泄露风险时,定性评估明确风险类型为“敏感信息泄露”,定量评估则测算出风险发生概率为5%,可能导致的直接经济损失约200万元。某企业jin采用定性评估,将所有风险都归为“高风险”,导致安全资源平均分配,重点风险未得到充分防控;另一企业jin依赖定量评估,因部分风险难以量化而被遗漏。因此,结合方法需先通过定性评估梳理风险类型,再对关键风险开展定量评估,既确保风险识别quan面,又为风险处置提供精细依据,提升评估结果的实用性。
同意获取机制:实现“精细告知+自主选择” 同意管理的he心是构建“透明化+可操作”的获取机制,避免“一揽子同意”。在用户注册或使用he心功能前,需通过分层弹窗展示同意条款,di一层明确基础功能必需的min数据范围及同意要求,第二层列出非必需功能(如个性化推荐)的附加数据处理需求,用户可单独勾选同意或拒绝。条款内容需使用通俗语言,将“数据处理”转化为“我们将使用您的浏览记录推荐商品”等易懂表述,敏感个人信息处理需单独弹窗,标注“重要提示”。同时,同意获取需具备可追溯性,记录用户同意时间、方式及具体条款版本,确保每一次同意均符合“明示同意”要求,规避合规风险。ISO42001规范人工智能全生命周期管理,筑牢AI应用伦理与安全防线。

2025年11月24日,上海市经济和信息化wei员会(以下简称“上海经信委”)正式公示《2025年网络和数据安全支撑单位名单》,经自主申报、资料审查、zhuan家评审等多轮严格遴选,上海安言信息技术有限公司成功入选,成为45家拟入选支撑单位之一。本次申报入围,上海安言信息技术有限公司(安言咨询)主要聚焦两大he心支撑方向:在技术支撑与交付方面,将推进工业互联网网络安全分级分类建设,探索构建工业领域数据安全知识图谱,并结合等保/关基合规审计,对重点系统开展现场核查与feng险评估;在产业研究与生态培育方面,将持续调研网络安全产品趋势和动向,深化网络和数据安全产业研究,同时持续参与承办网络安全活动、编制发布行业报告,进一步完善产业生态图谱,助力上海网络安全产业有序发展。 网络信息安全分析需从威胁、漏洞、风险三方面入手,结合攻防数据制定针对性防护策略。北京银行信息安全
企业网络安全培训课程需分层设计,针对高管、技术人员及普通员工制定差异化内容。北京信息安全标准
云SaaS环境下PIMS的落地离不开服务商与用户的责任协同,he心在于明确数据处理各环节的安全责任划分,避免因权责模糊导致合规风险。从责任划分原则来看,应遵循“谁处理、谁负责”与“共同责任”相结合的原则:SaaS服务商作为数据处理的技术支持方,需承担数据存储、传输、处理等技术层面的安全责任,包括提供安全稳定的服务环境、部署数据加密、访问控制等技术措施、定期开展安全评估与漏洞修复等。用户作为数据的所有者或控制方,需承担数据处理的管理责任,包括明确数据处理目的与范围、制定内部数据使用规范、加强员工合规培训、对数据处理行为进行监督等。具体责任划分方面,在数据存储环节,服务商需保障存储环境的安全性,防范数据泄露、丢失风险;用户需明确数据存储的地域要求,确保符合跨境数据传输相关规定。在数据处理环节,服务商需按照用户的要求合规处理数据,不得超范围处理;用户需对数据处理的合法性负责,确保数据来源合规、处理目的正当。在安全事件响应环节,服务商需及时发现并通知用户安全事件,提供技术支持协助处置;用户需主导安全事件的应对,履行通知数据主体、向监管机构报告等义务。为确保责任协同落地,双方需在服务协议中明确权责划分条款。 北京信息安全标准
数据处理的商业化分工日益精细,外包、收购、合作等模式使得控制者与处理者的关系频繁变动,法定职责边界难以覆盖所有场景。企业并购中,收购方继承被收购方的PII处理活动后,往往需承担历史遗留的安全责任,这正是万豪酒店集团案件的he心矛盾。这种立场在欧盟GDPR第4条中得到法律支撑——控制者被定义为“决定个人数据处理目的与方式的自然人或法人”,而“方式”的界定涵盖了技术安全措施。由此也可以联想到,在技术外包场景中,例如某银行将he心系统运维外包给IT服务商,若服务商员工违规访问用户账户,银行是否因“未履行监督义务”而担责?此外,数据处理外包中,控制者常通过合同约定转移责任,但西班牙高级法院明确...