由于“深度学习”算法所依赖的“涌现”现象具有难以解释的特性,加之训练模型所使用的数据可能存在各类问题,且模型训练需依赖大量的算力基础设施,AI自身的安全风险始终处于高位。与传统软件按照需求和规格进行精确编程不同,人工智能系统采用数据驱动的训练和优化方法来处理多样化的输入。这使得AI系统的架构相较于传统软件系统更为复杂,面临的威胁也更加多样化和隐蔽。例如,数据污染或篡改可能导致AI系统做出错误决策,而模型的可解释性差则使得问题排查和修复变得极为困难。OWASP自2023年起持续发布AI应用风险Top10榜单,并于今年3月27日更名为OWASPGenAI安全项目,进而提升至OWASP旗舰项目的地位。此外,人工智能的广泛应用引发了就业结构的深刻变革,传统职业面临被自动化替代的风险,进而加剧了社会不平等问题。AI的决策过程缺乏透明度和可解释性,这使得评估其在涉及公共利益和伦理道德决策中的信任度变得尤为困难。同时,Deepfake等利用人工智能实施的恶意行为手段,进一步加剧了公众对AI技术滥用的担忧。为应对这些挑战,多年前全球范围内开始高度重视AI的伦理和安全问题。各国**、****及企业纷纷出台相关政策和指南,旨在规范AI的发展和应用。 信息调研阶段是深入了解企业数据安全现状的关键环节。信息安全报价

《数据安全法》中也已明确规定重要数据的处理者未对数据处理活动定期开展风险评估,主管部门会被罚款5万-50万元,直接责任人员可被罚款1万-10万元,风险评估已从“选择项”变为“必答题”。此外,有效的风险评估还能提升企业的竞争力。在客户越来越关注数据安全的时代,拥有完善的数据安全保障体系的企业,更容易赢得客户的信任和合作机会,从而在市场竞争中脱颖而出。数据安全风险评估实施流程03以《GB/T45577-2025数据安全技术数据安全风险评估方法》为例,来看一下数据安全风险评估的实施流程:第一阶段:评估准备——谋定而后动评估准备阶段是整个数据安全风险评估工作的基石。在这一阶段,首先要确定评估目标,明确此次评估旨在解决的**问题。其次,划定评估范围至关重要,需精细界定涉及的业务领域、系统架构以及数据范畴。再者,组建一支的评估团队,团队成员应涵盖技术、法务、业务等多领域人才,为评估提供准确的信息。***,制定详细的评估方案,合理规划时间进度、资源调配、评估方法以及所需工具,确保评估工作有条不紊地推进。第二阶段:信息调研——摸清家底信息调研阶段是深入了解企业数据安全现状的关键环节。对数据处理者进行调研,***了解企业的**架构。 企业信息安全分类2024年全球数据泄露事件同比激增37%,单次泄露平均成本达435万美元,企业正面临前所未有的安全挑战。

正面与负面案例比比皆是。一年多前,网络安全审查办公室约谈同方知网(北京)技术有限公司负责人,宣布对知网启动网络安全审查。据悉,知网掌握着大量个人信息和涉及**、工业、电信、交通运输、自然资源、卫生**、金融等重点行业领域的重要数据,以及我国重大项目、重要科技成果及关键技术动态等敏感信息。知网被审查的原因显而易见,虽然知网有保密**措施使得部分**不能被检索和下载,但数据分类分级未完善充分,所以只要充值足够金额,许多涉密信息都能被下载。在被审查之前,定然已经存在泄密情况。事实上,这类情况不*是知网一家。曾有业内***安全治理**称:“大多数企业都知道数据安全很重要,但并不清楚自己的重要数据、敏感数据等存储在哪儿、哪些环节流通、哪些业务在调用、隐藏着哪些风险。”正面的案例也是数不胜数。2024年巴黎奥运会即将开幕,其必然会用到数据分类分级技术。为什么这么说呢?因为此前在国内举办的冬奥会,就将数据分类分级工作做得相当出色。2022北京冬奥会运行着包括比赛、**及协调、观赛出席仪式、观赛体验、裁判及竞赛**、传播及报道等60多个技术系统类型。还有运动员、技术官员、媒体、贵宾、观众、工作人员等参与人群。
随着AI及AI大模型、大数据的技术发展,实际上数据分类分级未来更有大展拳脚的空间,因为数据分类分级可能更加智能化、自动化和精细化。例如,利用深度学习、自然语言处理等技术,AI大模型可以自动识别和分类大量的文本、图像和音频数据。这将**提高数据分类分级的效率和准确性,减少人工干预的需求。AI还能分析用户的行为模式和数据访问习惯,预测数据的使用风险,并实时调整数据分类分级策略。这将有助于实现更加动态和自适应的数据安全保护。此外,AI大模型具备持续学习的能力,可以根据不断变化的数据特征和安全威胁进行自我优化,这将使数据分类分级策略更加灵活有效,甚至能够主动应对新型攻击和威胁。由此产生的优势显而易见,数据分类分级将变得更加智能化和自动化。智能化的数据分类分级策略也可以减少人力,降低运营成本;更容易满足各种法规和标准的要求,降低法律风险。继而再结合大数据技术,**处理和分析海量数据集,为数据分类分级提供强大的计算能力和存储支持。这将使得**更***地了解其数据资产状况,制定更加精细化的分类分级策略。通过数据挖掘和分析技术,大数据可以帮助**发现隐藏在数据中的潜在规律和关联。所以,我们坚定地认为。 帮助深入理解ISO42001标准要求,掌握AI风险管理的关键技能和方法,提升整体管理水平和团队协作能力。

信息安全|关注安言在金融行业数字化转型加速推进的背景下,数据安全已成为金融机构**竞争力的重要组成部分。**金融监督管理总局于2024年12月发布的《银行保险机构数据安全管理办法》(以下简称《办法》),作为金融行业数据安全的专项法规,系统性地提出了数据分类分级、全生命周期管理、个人信息保护等要求。这部法规不仅是对上位法的细化落实,更紧密回应了金融行业在数据共享、跨境传输、第三方合作等复杂场景下的安全挑战。本文将从落地注意事项与咨询建议两个维度,为金融机构提供贴合业务实际的合规实施方法论,助力机构在数据价值释放与安全风险防控之间找到平衡。《银行保险机构数据安全管理办法》**要点数据分类分级方面,《办法》要求将数据划分为**、重要、一般三级,其中一般数据进一步细分为敏感数据和其他一般数据,并采取差异化保护措施。**数据涉及**安全和公共利益,需重点防护。对于个人信息保护,《办法》强调“明确告知、授权同意”原则,收集范围限于业务必需的**小范围,共享或对外提供需取得用户同意,重大处理活动需进行影响评估。数据安全治理架构的构建是落实《办法》的重要支撑。 基于安言咨询的影响评估流程和风险评估方法论,系统开展AI系统的影响评估及风险评估工作。南京个人信息安全供应商
如何满足当前及未来的人工智能合规要求,成为所有企业和组织必须深入思考的课题。信息安全报价
不妨来参看一些具体案例进行分析:案例一:某电商企业的数据安全风险评估与整改某电商企业在面临激烈市场竞争和经济压力的情况下,决定通过数据安全风险评估来提升自身的数据安全水平。该企业首先识别了自身的关键数据资产,包括用户订单信息、支付数据、商品信息等。然后,通过漏洞扫描和渗透测试等方法对系统进行了***的安全评估。评估结果显示,该企业的部分系统存在SQL注入、跨站脚本攻击等安全漏洞。针对这些问题,企业制定了详细的整改措施,包括修复漏洞、加强访问控制、提高员工的安全意识等。经过一段时间的实施,该企业的数据安全水平得到了***提升,客户信任度也有所增加。案例二:某制造企业的数据安全风险评估与自动化工具应用某制造企业在面临生产成本上升和市场竞争加剧的情况下,决定通过引入自动化工具来提高数据安全风险评估的效率和准确性。该企业选择了某款开源的漏洞扫描工具,并对其进行了一定的定制化开发,以满足自身的需求。通过自动化工具的应用,该企业能够快速地对大量系统进行安全评估,并及时发现潜在的安全漏洞。同时,自动化工具还减少了人力成本和时间成本,提高了整体运营效率。在安全投入缩减的情况下。 信息安全报价
ISO37301合规管理体系在强调制度建设的同时,尤为注重合规文化的培育,将其视为合规管理有效落地的he心保障。该标准明确要求组织管理层发挥yin领作用,通过制定清晰的合规方针、开展常态化合规培训,向全体员工传递合规理念。同时,组织需建立合规激励与问责机制,对合规行为予以表彰,对违规行为严肃处理,引导员工将合规意识内化为行为自觉。通过持续培育合规文化,组织能够打破部门壁垒,推动形成全员参与、全程管控、quan面覆盖的合规管理氛围,使合规成为组织的he心价值观之一,从根本上提升合规管理的成效。云 SaaS 环境下 PIMS 落地需协同服务商与用户,明确数据存储、处理环节的安全责任划分。ISO27...